Do you want to publish a course? Click here

Nuclear-Physics Multi-Messenger Astrophysics Constraints on the Neutron-Star Equation of State: Adding NICERs PSR J0740+6620 Measurement

100   0   0.0 ( 0 )
 Added by Peter Tsun Ho Pang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the past few years, new observations of neutron stars and neutron-star mergers have provided a wealth of data that allow one to constrain the equation of state of nuclear matter at densities above nuclear saturation density. However, most observations were based on neutron stars with masses of about 1.4 solar masses, probing densities up to $sim$ 3-4 times the nuclear saturation density. Even higher densities are probed inside massive neutron stars such as PSR J0740+6620. Very recently, new radio observations provided an update to the mass estimate for PSR J0740+6620 and X-ray observations by the NICER and XMM telescopes constrained its radius. Based on these new measurements, we revisit our previous nuclear-physics multi-messenger astrophysics constraints and derive updated constraints on the equation of state describing the neutron-star interior. By combining astrophysical observations of two radio pulsars, two NICER measurements, the two gravitational-wave detections GW170817 and GW190425, detailed modeling of the kilonova AT2017gfo, as well as the gamma-ray burst GRB170817A, we are able to estimate the radius of a typical 1.4-solar mass neutron star to be $11.94^{+0.76}_{-0.87} rm{km}$ at 90% confidence. Our analysis allows us to revisit the upper bound on the maximum mass of neutron stars and disfavours the presence of a strong first-order phase transition from nuclear matter to exotic forms of matter, such as quark matter, inside neutron stars.



rate research

Read More

In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. (2021) by analyzing a combined dataset from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass-radius estimate of PSR J0030+0451 we find the radius of a 1.4 solar mass neutron star to be constrained to the 95% credible ranges 12.33^{+0.76}_{-0.81} km (PP model) and 12.18^{+0.56}_{-0.79} km (CS model). In addition, we explore different chiral effective field theory calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities.
66 - Nai-Bo Zhang , Bao-An Li 2021
By directly inverting several neutron star observables in the three-dimensional parameter space for the Equation of State of super-dense neutron-rich nuclear matter, we show that the lower radius limit for PSR J0740+6620 of mass $2.08pm 0.07~M_{odot}$ from Neutron Star Interior Composition Explorer (NICER)s very recent observation sets a much tighter lower boundary than previously known for nuclear symmetry energy in the density range of $(1.0sim 3.0)$ times the saturation density $rho_0$ of nuclear matter. The super-soft symmetry energy leading to the formation of proton polarons in this density region of neutron stars is clearly disfavoured by the first radius measurement for the most massive neutron star observed reliably so far.
We present a rapid analytic framework for predicting kilonova light curves following neutron star (NS) mergers, where the main input parameters are binary-based properties measurable by gravitational wave detectors (chirp mass and mass ratio, orbital inclination) and properties dependent on the nuclear equation of state (tidal deformability, maximum NS mass). This enables synthesis of a kilonova sample for any NS source population, or determination of the observing depth needed to detect a live kilonova given gravitational wave source parameters in low latency. We validate this code, implemented in the public MOSFiT package, by fitting it to GW170817. A Bayes factor analysis overwhelmingly ($B>10^{10}$) favours the inclusion of an additional luminosity source in addition to lanthanide-poor dynamical ejecta during the first day. This is well fit by a shock-heated cocoon model, though differences in the ejecta structure, opacity or nuclear heating rate cannot be ruled out as alternatives. The emission thereafter is dominated by a lanthanide-rich viscous wind. We find the mass ratio of the binary is $q=0.92pm0.07$ (90% credible interval). We place tight constraints on the maximum stable NS mass, $M_{rm TOV}=2.17^{+0.08}_{-0.11}$ M$_odot$. For a uniform prior in tidal deformability, the radius of a 1.4 M$_odot$ NS is $R_{1.4}sim 10.7$ km. Re-weighting with a prior based on equations of state that support our credible range in $M_{rm TOV}$, we derive a final measurement $R_{1.4}=11.06^{+1.01}_{-0.98}$ km. Applying our code to the second gravitationally-detected neutron star merger, GW190425, we estimate that an associated kilonova would have been fainter (by $sim0.7$ mag at one day post-merger) and declined faster than GW170817, underlining the importance of tuning follow-up strategies individually for each GW-detected NS merger.
155 - Andreas Bauswein 2021
The very first detection of gravitational waves from a neutron star binary merger, GW170817, exceeded all expectations. The event was relatively nearby, which may point to a relatively high merger rate. It was possible to extract finite-size effects from the gravitational-wave signal, which constrains the nuclear equation of state. Also, an electromagnetic counterpart was detected at many wavebands from radio to gamma rays marking the begin of a new multi-messenger era involving gravitational waves. We describe how multi-messenger observations of GW170817 are employed to constrain the nuclear equation of state. Combining the information from the optical emission and the mass measurement through gravitational waves leads to a lower limit on neutron star radii. According to this conservative analysis, which employs a minimum set of assumptions, the radii of neutron stars with typical masses should be larger than about 10.7~km. This implies a lower limit on the tidal deformability of about 210, while much stronger lower bounds are not supported by the data of GW170817. The multi-messenger interpretation of GW170817 rules out very soft nuclear matter and complements the upper bounds on NS radii which are derived from the measurement of finite-size effects during the pre-merger phase. We highlight the future potential of multi-messenger observations and of GW measurements of the postmerger phase for constraining the nuclear equation of state. Finally, we propose an observing strategy to maximize the scientific yield of future multi-messenger observations.
Recent detailed 1D core-collapse simulations have brought new insights on the final fate of massive stars, which are in contrast to commonly used parametric prescriptions. In this work, we explore the implications of these results to the formation of coalescing black-hole (BH) - neutron-star (NS) binaries, such as the candidate event GW190426_152155 reported in GWTC-2. Furthermore, we investigate the effects of natal kicks and the NSs radius on the synthesis of such systems and potential electromagnetic counterparts linked to them. Synthetic models based on detailed core-collapse simulations result in an increased merger detection rate of BH-NS systems ($sim 2.3$ yr$^{-1}$), 5 to 10 times larger than the predictions of standard parametric prescriptions. This is primarily due to the formation of low-mass BH via direct collapse, and hence no natal kicks, favored by the detailed simulations. The fraction of observed systems that will produce an electromagnetic counterpart, with the detailed supernova engine, ranges from $2$-$25$%, depending on uncertainties in the NS equation of state. Notably, in most merging systems with electromagnetic counterparts, the NS is the first-born compact object, as long as the NSs radius is $lesssim 12,mathrm{km}$. Furthermore, core-collapse models that predict the formation of low-mass BHs with negligible natal kicks increase the detection rate of GW190426_152155-like events to $sim 0.6 , $yr$^{-1}$; with an associated probability of electromagnetic counterpart $leq 10$% for all supernova engines. However, increasing the production of direct-collapse low-mass BHs also increases the synthesis of binary BHs, over-predicting their measured local merger density rate. In all cases, models based on detailed core-collapse simulation predict a ratio of BH-NSs to binary BHs merger rate density that is at least twice as high as other prescriptions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا