Random walks on complex networks with multiple resetting nodes: a renewal approach


Abstract in English

Due to wide applications in diverse fields, random walks subject to stochastic resetting have attracted considerable attention in the last decade. In this paper, we study discrete-time random walks on complex network with multiple resetting nodes. Using a renewal approach, we derive exact expressions of the occupation probability of the walker in each node and mean-field first-passage time between arbitrary two nodes. All the results are relevant to the spectral properties of the transition matrix in the absence of resetting. We demonstrate our results on circular networks, stochastic block models, and Barabasi-Albert scale-free networks, and find the advantage of the resetting processes to multiple resetting nodes in global searching on such networks.

Download