Do you want to publish a course? Click here

Random walks on complex networks with multiple resetting nodes: a renewal approach

97   0   0.0 ( 0 )
 Added by Hanshuang Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Due to wide applications in diverse fields, random walks subject to stochastic resetting have attracted considerable attention in the last decade. In this paper, we study discrete-time random walks on complex network with multiple resetting nodes. Using a renewal approach, we derive exact expressions of the occupation probability of the walker in each node and mean-field first-passage time between arbitrary two nodes. All the results are relevant to the spectral properties of the transition matrix in the absence of resetting. We demonstrate our results on circular networks, stochastic block models, and Barabasi-Albert scale-free networks, and find the advantage of the resetting processes to multiple resetting nodes in global searching on such networks.



rate research

Read More

Random walks on discrete lattices are fundamental models that form the basis for our understanding of transport and diffusion processes. For a single random walker on complex networks, many properties such as the mean first passage time and cover time are known. However, many recent applications such as search engines and recommender systems involve multiple random walkers on complex networks. In this work, based on numerical simulations, we show that the fraction of nodes of scale-free network not visited by $W$ random walkers in time $t$ has a stretched exponential form independent of the details of the network and number of walkers. This leads to a power-law relation between nodes not visited by $W$ walkers and by one walker within time $t$. The problem of finding the distinct nodes visited by $W$ walkers, effectively, can be reduced to that of a single walker. The robustness of the results is demonstrated by verifying them on four different real-world networks that approximately display scale-free structure.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.
We present an analytical method for computing the mean cover time of a random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity is particularly important for random search processes and target localization in network topologies. Based on the global mean first passage time of target nodes we derive an estimate for the cumulative distribution function of the cover time based on first passage time statistics. We show that our result can be applied to various model networks, including ErdH{o}s-Renyi and Barabasi-Albert networks, as well as various real-world networks. Our results reveal an intimate link between first passage and cover time statistics in networks in which structurally induced temporal correlations decay quickly and offer a computationally efficient way for estimating cover times in network related applications.
We study several lattice random walk models with stochastic resetting to previously visited sites which exhibit a phase transition between an anomalous diffusive regime and a localization regime where diffusion is suppressed. The localized phase settles above a critical resetting rate, or rate of memory use, and the probability density asymptotically adopts in this regime a non-equilibrium steady state similar to that of the well known problem of diffusion with resetting to the origin. The transition occurs because of the presence of a single impurity site where the resetting rate is lower than on other sites, and around which the walker spontaneously localizes. Near criticality, the localization length diverges with a critical exponent that falls in the same class as the self-consistent theory of Anderson localization of waves in random media. The critical dimensions are also the same in both problems. Our study provides analytically tractable examples of localization transitions in path-dependent, reinforced stochastic processes, which can be also useful for understanding spatial learning by living organisms.
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stochastically reset to a given position with a resetting rate $r$. The mean squared displacements of the CTRW and L{e}vy walks with stochastic resetting are calculated, uncovering that the stochastic resetting always makes the CTRW process localized and L{e}vy walk diffuse slower. The asymptotic behaviors of the probability density function of Levy walk with stochastic resetting are carefully analyzed under different scales of $x$, and a striking influence of stochastic resetting is observed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا