No Arabic abstract
We calculate the cross-sections of atomic ionization by absorption of scalar particles in the energy range from a few eV to 100 keV. We consider both nonrelativistic particles (dark matter candidates) and relativistic particles which may be produced inside Sun. We provide numerical results for atoms relevant for direct dark matter searches (O, Na, Ar, Ca, Ge, I, Xe, W and Tl). We identify a crucial flaw in previous calculations and show that they overestimated the ionization cross sections by several orders of magnitude due to violation of the orthogonality of the bound and continuum electron wave functions. Using our computed cross-sections, we interpret the recent data from the Xenon1T experiment, establishing the first direct bounds on coupling of scalars to electrons. We argue that the Xenon1T excess can be explained by the emission of scalars from the Sun. While our finding is in a similar tension with astrophysical bounds as the solar axion hypothesis, we establish direct limits on scalar DM for the $sim 1-10,mathrm{keV}$ mass range. We also update axio-ionization cross-sections. Numerical data files are provided.
We propose and experimentally demonstrate a method for detection of light scalar Dark Matter (DM), through probing temporal oscillations of fundamental constants in an atomic optical transition. Utilizing the quantum information notion of Dynamic Decoupling (DD) in a table-top setting, we are able to obtain model-independent bounds on variations of $alpha$ and $m_e$ at frequencies up to the MHz scale. We interpret our results to constrain the parameter space of light scalar DM field models. We consider the generic case, where the couplings of the DM field to the photon and to the electron are independent, as well as the case of a relaxion DM model, including the scenario of a DM boson star centered around Earth. Given the particular nature of DD, allowing to directly observe the oscillatory behaviour of coherent DM, and considering future experimental improvements, we conclude that our proposed method could be complimentary to, and possibly competitive with, gravitational probes of light scalar DM.
We propose a new strategy to search for a particular type of dark matter via nuclear capture. If the dark matter particle carries baryon number, as motivated by a class of theoretical explanations of the matter-antimatter asymmetry of the universe, it can mix with the neutron and be captured by an atomic nucleus. The resulting state de-excites by emitting a single photon or a cascade of photons with a total energy of up to several MeV. The exact value of this energy depends on the dark matter mass. We investigate the prospects for detecting dark matter capture signals in current and future neutrino and dark matter direct detection experiments.
We investigate the predictions of a simple extension of the Standard Model where the Higgs sector is composed of one $SU(2)_L$ doublet and one real triplet. We discuss the general features of the model, including its vacuum structure, theoretical and phenomenological constraints, and expectations for Higgs collider studies. The model predicts the existence of a pair of light charged scalars and, for vanishing triplet vacuum expectation value, contains a cold dark matter candidate. When the latter possibility occurs, the charged scalars are long-lived, leading to a prediction of distinctive single charged track with missing transverse energy or double charged track events at the LHC. The model predicts a significant excess of two-photon events compared to SM expectations due to the presence of a light charged scalar.
The transition magnetic moment of a sterile-to-active neutrino conversion gives rise to not only radiative decay of a sterile neutrino, but also its non-standard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidates, their decay signals are actively searched for in cosmic X-ray spectra. In this work, we consider the NSI that leads to atomic ionization, which can be detected by direct dark matter experiments. It is found that this inelastic scattering process for a nonrelativistic sterile neutrino has a pronounced enhancement in the differential cross section at energy transfer about half of its mass, manifesting experimentally as peaks in the measurable energy spectra. The enhancement effects gradually smear out as the sterile neutrino becomes relativistic. Using data taken with germanium detectors that have fine energy resolution in keV and sub-keV regimes, constraints on sterile neutrino mass and its transition magnetic moment are derived and compared with those from astrophysical observations.
As experimental searches for WIMP dark matter continue to yield null results, models beyond the WIMP paradigm have proliferated in order to elude ever improving observational constraints, among them that of sub-GeV dark matter mediated by a massive vector portal (a dark photon) associated with a new dark $U(1)$ gauge symmetry. It has been previously noted that for a significant range of the parameter space of this class of models, the annihilation of dark matter particles into a pair of dark photons can dominate the freeze-out process even when this process is kinematically forbidden for dark matter at rest -- this is known as the forbidden dark matter (FDM) regime. Prior studies of this regime, however, assume that any dark Higgs associated with breaking the dark $U(1)$ and imparting mass to the dark photon is decoupled from the dark matter and as such plays no role in the freeze-out process. In this paper, we explore the effects of a dark Higgs on sub-GeV dark matter phenomenology in this FDM regime by considering the simplest possible construction in which there exist non-trivial dark matter-dark Higgs couplings: a model with a single complex scalar DM candidate coupled directly to the dark Higgs field. We find that for a wide range of parameter space, the dark Higgs can alter the resulting relic abundance by many orders of magnitude, and that this effect can remain significant even for a small dark matter-dark Higgs coupling constant. Considering measurements from direct detection and measurements of the CMB, we further find that points in this models parameter space which recreate the appropriate dark matter relic abundance suffer only mild constraints from other sources at present, but may become accessible in near-future direct detection experiments.