Do you want to publish a course? Click here

Joint Analysis of Multicolor Photometry: A New Approach to Constrain the Nature of Multiple-Star Systems Hosting Exoplanet Candidates

86   0   0.0 ( 0 )
 Added by Kohei Miyakawa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new method to assess the properties of transiting planet candidates by multicolor photometry. By analyzing multicolor transit/eclipse light curves and apparent magnitudes of the target in parallel, this method attempts to identify the nature of the system and provide a quantitative constraint on the properties of unresolved companion(s). We demonstrate our method by observing the six systems hosting candidate transiting planets, identified by the K2 mission (EPIC 206036749, EPIC 206500801, EPIC 210513446, EPIC 211800191, EPIC 220621087, and EPIC 220696233). Applying our analysis code to the six targets, we find that EPIC 206036749, EPIC 210513446, and EPIC 211800191 are likely to be triple-star systems including eclipsing binaries, and EPIC 220696233 is likely a planetary system, albeit further observations are required to confirm the nature. Additionally, we confirm that the systematic errors in the derived system parameters arising from adopting specific isochrone models and observing instruments (passbands) are relatively small. While this approach alone is not powerful enough to validate or refute planet candidates, the technique allows us to constrain the properties of resolved/unresolved companions, and prioritize the planet candidates for further follow-up observations (e.g., radial-velocity measurements).



rate research

Read More

We report first multicolor polarimetric measurements (UBV bands) for the hot Jupiters HD189733b and confirm our previously reported detection of polarization in the B band (Berdyugina et al. 2008). The wavelength dependence of polarization indicates the dominance of Rayleigh scattering with a peak in the blue B and U bands of ~10^-4+/-10^-5 and at least a factor of two lower signal in the V band. The Rayleigh-like wavelength dependence, detected also in the transmitted light during transits, implies a rapid decrease of the polarization signal toward longer wavelengths. Therefore, the nondetection by Wiktorowicz (2009), based on a measurement integrated within a broad passband covering the V band and partly B and R bands, is inconclusive and consistent with our detection in B. We discuss possible sources of the polarization and demonstrate that effects of incomplete cancellation of stellar limb polarization due to starspots or tidal perturbations are negligible as compared to scattering polarization in the planetary atmosphere. We compare the observations with a Rayleigh-Lambert model and determine effective radii and geometrical albedos for different wavelengths. We find a close similarity of the wavelength dependent geometrical albedo with that of the Neptune atmosphere, which is known to be strongly influenced by Rayleigh and Raman scattering. Our result establishes polarimetry as a reliable means for directly studying exoplanetary atmospheres.
We report here on our search for excess power in photometry of Neptune collected by the K2 mission that may be due to intrinsic global oscillations of the planet Neptune. To conduct this search, we developed new methods to correct for instrumental effects such as intrapixel variability and gain variations. We then extracted and analyzed the time-series photometry of Neptune from 49 days of nearly continuous broadband photometry of the planet. We find no evidence of global oscillations and place an upper limit of $sim$5 ppm at 1000 uhz for the detection of a coherent signal. With an observed cadence of 1-minute and point-to-point scatter less than 0.01%, the photometric signal is dominated by reflected light from the Sun, which is in turn modulated by atmospheric variability of Neptune at the 2% level. A change in flux is also observed due to the increasing distance between Neptune and the K2 spacecraft, and solar variability with convection-driven solar p modes present.
SPIRou is the newest spectropolarimeter and high-precision velocimeter that has recently been installed at the Canada-France-Hawaii Telescope on Maunakea, Hawaii. It operates in the near-infrared and simultaneously covers the 0.98-2.35 {mu}m domain at high spectral resolution. SPIRou is optimized for exoplanet search and characterization with the radial-velocity technique, and for polarization measurements in stellar lines and subsequent magnetic field studies. The host of the transiting hot Jupiter HD 189733 b has been observed during early science runs. We present the first near-infrared spectropolarimetric observations of the planet-hosting star as well as the stellar radial velocities as measured by SPIRou throughout the planetary orbit and two transit sequences. The planetary orbit and Rossiter-McLaughlin anomaly are both investigated and modeled. The orbital parameters and obliquity are all compatible with the values found in the optical. The obtained radial-velocity precision is compatible with about twice the photon-noise estimates for a K2 star under these conditions. The additional scatter around the orbit, of about 8 m/s, agrees with previous results that showed that the activity-induced scatter is the dominant factor. We analyzed the polarimetric signal, Zeeman broadening, and chromospheric activity tracers such as the 1083nm HeI and the 1282nm Pab{eta} lines to investigate stellar activity. First estimates of the average unsigned magnetic flux from the Zeeman broadening of the FeI lines give a magnetic flux of 290+-58 G, and the large-scale longitudinal field shows typical values of a few Gauss. These observations illustrate the potential of SPIRou for exoplanet characterization and magnetic and stellar activity studies.
187 - Kaspar von Braun 2011
GJ 581 is an M dwarf host of a multiplanet system. We use long-baseline interferometric measurements from the CHARA Array, coupled with trigonometric parallax information, to directly determine its physical radius to be $0.299 pm 0.010 R_{odot}$. Literature photometry data are used to perform spectral energy distribution fitting in order to determine GJ 581s effective surface temperature $T_{rm EFF}=3498 pm 56$ K and its luminosity $L=0.01205 pm 0.00024 L_{odot}$. From these measurements, we recompute the location and extent of the systems habitable zone and conclude that two of the planets orbiting GJ 581, planets d and g, spend all or part of their orbit within or just on the edge of the habitable zone.
We have developed a comprehensive methodology for calculating the circumbinary HZ in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet, and use the Suns HZ to calculate the locations of the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Keplers currently known circumbinary planetary system and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا