Do you want to publish a course? Click here

VPN++: Rethinking Video-Pose embeddings for understanding Activities of Daily Living

247   0   0.0 ( 0 )
 Added by Srijan Das
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Many attempts have been made towards combining RGB and 3D poses for the recognition of Activities of Daily Living (ADL). ADL may look very similar and often necessitate to model fine-grained details to distinguish them. Because the recent 3D ConvNets are too rigid to capture the subtle visual patterns across an action, this research direction is dominated by methods combining RGB and 3D Poses. But the cost of computing 3D poses from RGB stream is high in the absence of appropriate sensors. This limits the usage of aforementioned approaches in real-world applications requiring low latency. Then, how to best take advantage of 3D Poses for recognizing ADL? To this end, we propose an extension of a pose driven attention mechanism: Video-Pose Network (VPN), exploring two distinct directions. One is to transfer the Pose knowledge into RGB through a feature-level distillation and the other towards mimicking pose driven attention through an attention-level distillation. Finally, these two approaches are integrated into a single model, we call VPN++. We show that VPN++ is not only effective but also provides a high speed up and high resilience to noisy Poses. VPN++, with or without 3D Poses, outperforms the representative baselines on 4 public datasets. Code is available at https://github.com/srijandas07/vpnplusplus.



rate research

Read More

We present a novel dataset and a novel algorithm for recognizing activities of daily living (ADL) from a first-person wearable camera. Handled objects are crucially important for egocentric ADL recognition. For specific examination of objects related to users actions separately from other objects in an environment, many previous works have addressed the detection of handled objects in images captured from head-mounted and chest-mounted cameras. Nevertheless, detecting handled objects is not always easy because they tend to appear small in images. They can be occluded by a users body. As described herein, we mount a camera on a users wrist. A wrist-mounted camera can capture handled objects at a large scale, and thus it enables us to skip object detection process. To compare a wrist-mounted camera and a head-mounted camera, we also develop a novel and publicly available dataset that includes videos and annotations of daily activities captured simultaneously by both cameras. Additionally, we propose a discriminative video representation that retains spatial and temporal information after encoding frame descriptors extracted by Convolutional Neural Networks (CNN).
Over the years, activity sensing and recognition has been shown to play a key enabling role in a wide range of applications, from sustainability and human-computer interaction to health care. While many recognition tasks have traditionally employed inertial sensors, acoustic-based methods offer the benefit of capturing rich contextual information, which can be useful when discriminating complex activities. Given the emergence of deep learning techniques and leveraging new, large-scaled multi-media datasets, this paper revisits the opportunity of training audio-based classifiers without the onerous and time-consuming task of annotating audio data. We propose a framework for audio-based activity recognition that makes use of millions of embedding features from public online video sound clips. Based on the combination of oversampling and deep learning approaches, our framework does not require further feature processing or outliers filtering as in prior work. We evaluated our approach in the context of Activities of Daily Living (ADL) by recognizing 15 everyday activities with 14 participants in their own homes, achieving 64.2% and 83.6% averaged within-subject accuracy in terms of top-1 and top-3 classification respectively. Individual class performance was also examined in the paper to further study the co-occurrence characteristics of the activities and the robustness of the framework.
We present a method to analyze images taken from a passive egocentric wearable camera along with the contextual information, such as time and day of week, to learn and predict everyday activities of an individual. We collected a dataset of 40,103 egocentric images over a 6 month period with 19 activity classes and demonstrate the benefit of state-of-the-art deep learning techniques for learning and predicting daily activities. Classification is conducted using a Convolutional Neural Network (CNN) with a classification method we introduce called a late fusion ensemble. This late fusion ensemble incorporates relevant contextual information and increases our classification accuracy. Our technique achieves an overall accuracy of 83.07% in predicting a persons activity across the 19 activity classes. We also demonstrate some promising results from two additional users by fine-tuning the classifier with one day of training data.
229 - Minjung Shin 2021
Developing video understanding intelligence is quite challenging because it requires holistic integration of images, scripts, and sounds based on natural language processing, temporal dependency, and reasoning. Recently, substantial attempts have been made on several video datasets with associated question answering (QA) on a large scale. However, existing evaluation metrics for video question answering (VideoQA) do not provide meaningful analysis. To make progress, we argue that a well-made framework, established on the way humans understand, is required to explain and evaluate the performance of understanding in detail. Then we propose a top-down evaluation system for VideoQA, based on the cognitive process of humans and story elements: Cognitive Modules for Evaluation (CogME). CogME is composed of three cognitive modules: targets, contents, and thinking. The interaction among the modules in the understanding procedure can be expressed in one sentence as follows: I understand the CONTENT of the TARGET through a way of THINKING. Each module has sub-components derived from the story elements. We can specify the required aspects of understanding by annotating the sub-components to individual questions. CogME thus provides a framework for an elaborated specification of VideoQA datasets. To examine the suitability of a VideoQA dataset for validating video understanding intelligence, we evaluated the baseline model of the DramaQA dataset by applying CogME. The evaluation reveals that story elements are unevenly reflected in the existing dataset, and the model based on the dataset may cause biased predictions. Although this study has only been able to grasp a narrow range of stories, we expect that it offers the first step in considering the cognitive process of humans on the video understanding intelligence of humans and AI.
State-of-the-art video action classifiers often suffer from overfitting. They tend to be biased towards specific objects and scene cues, rather than the foreground action content, leading to sub-optimal generalization performances. Recent data augmentation strategies have been reported to address the overfitting problems in static image classifiers. Despite the effectiveness on the static image classifiers, data augmentation has rarely been studied for videos. For the first time in the field, we systematically analyze the efficacy of various data augmentation strategies on the video classification task. We then propose a powerful augmentation strategy VideoMix. VideoMix creates a new training video by inserting a video cuboid into another video. The ground truth labels are mixed proportionally to the number of voxels from each video. We show that VideoMix lets a model learn beyond the object and scene biases and extract more robust cues for action recognition. VideoMix consistently outperforms other augmentation baselines on Kinetics and the challenging Something-Something-V2 benchmarks. It also improves the weakly-supervised action localization performance on THUMOS14. VideoMix pretrained models exhibit improved accuracies on the video detection task (AVA).

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا