Do you want to publish a course? Click here

Review of Technologies for Ion Therapy Accelerators

132   0   0.0 ( 0 )
 Added by Adam Steinberg
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cancer therapy using protons and heavier ions such as carbon has demonstrated advantages over other radiotherapy treatments. To bring about the next generation of clinical facilities, the requirements are likely to reduce the footprint, obtain beam intensities above 1E10 particles per spill, and achieve faster extraction for more rapid, flexible treatment. This review follows the technical development of ion therapy, discussing how machine parameters have evolved, as well as trends emerging in technologies for novel treatments such as FLASH. To conclude, the future prospects of ion therapy accelerators are evaluated.



rate research

Read More

122 - A. Garonna , U. Amaldi , R. Bonomi 2010
Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed cyclinacs. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multi-painting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H2+ ions in short pulses (1.5 {mu}s flat-top) and with sufficient intensity (at least 108 fully stripped carbon ions at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.
We report on the development of a radio frequency (RF) linear accelerator (linac) for multiple-ion beams that is made from stacks of low cost wafers. The accelerator lattice is comprised of RF-acceleration gaps and electrostatic quadrupole focusing elements that are fabricated on 10-cm wafers made from printed circuit board or silicon. We demonstrate ion acceleration with an effective gradient of about 0.5 MV per meter with an array of 3 by 3 beams. The total ion beam energies achieved to date are in the 10 keV range with total ion currents in tests with noble gases of ~0.1mA. We discuss scaling of the ion energy (by adding acceleration modules) and ion currents (with more beams) for applications of this multi-beam RF linac technology to ion implantation and surface modification of materials.
58 - C. Johnstone 2017
This paper reports on the conclusions of a 2013 Joint DOE/NCI Workshop, and translates clinical accelerator facility requirements into accelerator and beam-delivery technical specifications. Available or feasible accelerator technologies are compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in non-scaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.
Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.
89 - C. Hansel , M. Yadav , P. Manwani 2021
A future plasma based linear collider has the potential to reach unprecedented energies and transform our understanding of high energy physics. The extremely dense beams in such a device would cause the plasma ions to fall toward the axis. For more mild ion motion, this introduces a nonlinear perturbation to the focusing fields inside of the bubble. However, for extreme ion motion, the ion distribution collapses to a quasi-equilibrium characterized by a thin filament of extreme density on the axis which generates strong, nonlinear focusing fields. These fields can provoke unacceptable emittance growth that can be reduced through careful beam matching. In this paper, we discuss the rich physics of ion motion, give a brief overview of plans for the E-314 experiment at FACET-II which will experimentally demonstrate ion motion in plasma accelerators, and present results of particle-in-cell simulations of ion motion relevant to the E-314 experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا