Do you want to publish a course? Click here

Anomaly detection with Convolutional Graph Neural Networks

70   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We devise an autoencoder based strategy to facilitate anomaly detection for boosted jets, employing Graph Neural Networks (GNNs) to do so. To overcome known limitations of GNN autoencoders, we design a symmetric decoder capable of simultaneously reconstructing edge features and node features. Focusing on latent space based discriminators, we find that such setups provide a promising avenue to isolate new physics and competing SM signatures from sensitivity-limiting QCD jet contributions. We demonstrate the flexibility and broad applicability of this approach using examples of $W$ bosons, top quarks, and exotic hadronically-decaying exotic scalar bosons.



rate research

Read More

235 - Ao Li , Zhou Qin , Runshi Liu 2019
Customers make a lot of reviews on online shopping websites every day, e.g., Amazon and Taobao. Reviews affect the buying decisions of customers, meanwhile, attract lots of spammers aiming at misleading buyers. Xianyu, the largest second-hand goods app in China, suffering from spam reviews. The anti-spam system of Xianyu faces two major challenges: scalability of the data and adversarial actions taken by spammers. In this paper, we present our technical solutions to address these challenges. We propose a large-scale anti-spam method based on graph convolutional networks (GCN) for detecting spam advertisements at Xianyu, named GCN-based Anti-Spam (GAS) model. In this model, a heterogeneous graph and a homogeneous graph are integrated to capture the local context and global context of a comment. Offline experiments show that the proposed method is superior to our baseline model in which the information of reviews, features of users and items being reviewed are utilized. Furthermore, we deploy our system to process million-scale data daily at Xianyu. The online performance also demonstrates the effectiveness of the proposed method.
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCN operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the Pubmed dataset.
Graph convolution networks have recently garnered a lot of attention for representation learning on non-Euclidean feature spaces. Recent research has focused on stacking multiple layers like in convolutional neural networks for the increased expressive power of graph convolution networks. However, simply stacking multiple graph convolution layers lead to issues like vanishing gradient, over-fitting and over-smoothing. Such problems are much less when using shallower networks, even though the shallow networks have lower expressive power. In this work, we propose a novel Multipath Graph convolutional neural network that aggregates the output of multiple different shallow networks. We train and test our model on various benchmarks datasets for the task of node property prediction. Results show that the proposed method not only attains increased test accuracy but also requires fewer training epochs to converge. The full implementation is available at https://github.com/rangan2510/MultiPathGCN
113 - Jin Zheng , Qing Gao , Yanxuan Lv 2021
At present, there are a large number of quantum neural network models to deal with Euclidean spatial data, while little research have been conducted on non-Euclidean spatial data. In this paper, we propose a novel quantum graph convolutional neural network (QGCN) model based on quantum parametric circuits and utilize the computing power of quantum systems to accomplish graph classification tasks in traditional machine learning. The proposed QGCN model has a similar architecture as the classical graph convolutional neural networks, which can illustrate the topology of the graph type data and efficiently learn the hidden layer representation of node features as well. Numerical simulation results on a graph dataset demonstrate that the proposed model can be effectively trained and has good performance in graph level classification tasks.
The heart sound signals (Phonocardiogram - PCG) enable the earliest monitoring to detect a potential cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient monitoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection method for PCG has thus become imminent. To determine the state-of-the-art PCG classification algorithm, 48 international teams competed in the PhysioNet (CinC) Challenge at 2016 over the largest benchmark dataset with 3126 records with the classification outputs, normal (N), abnormal (A) and unsure - too noisy (U). In this study, our aim is to push this frontier further; however, we focus deliberately on the anomaly detection problem while assuming a reasonably high Signal-to-Noise Ratio (SNR) on the records. By using 1D Convolutional Neural Networks trained with a novel data purification approach, we aim to achieve the highest detection performance and a real-time processing ability with significantly lower delay and computational complexity. The experimental results over the high-quality subset of the same benchmark dataset shows that the proposed approach achieves both objectives. Furthermore, our findings reveal the fact that further improvements indeed require a personalized (patient-specific) approach to avoid major drawbacks of a global PCG classification approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا