No Arabic abstract
White dwarf spectroscopy shows that nearly half of white dwarf atmospheres contain metals that must have been accreted from planetary material that survived the red giant phases of stellar evolution. We can use metal pollution in white dwarf atmospheres as flags, signalling recent accretion, in order to prioritize an efficient sample of white dwarfs to search for transiting material. We present a search for planetesimals orbiting six nearby white dwarfs with the CHEOPS spacecraft. The targets are relatively faint for CHEOPS, $11$ mag $< G < 12.8$ mag. We use aperture photometry data products from the CHEOPS mission as well as custom PSF photometry to search for periodic variations in flux due to transiting planetesimals. We detect no significant variations in flux that cannot be attributed to spacecraft systematics, despite reaching a photometric precision of $<2$ ppt in 60 s exposures on each target. We simulate observations to show that the small survey is sensitive primarily to Moon-sized transiting objects with periods $3$ hr $< P < 10$ hr, with radii $R gtrsim 1000$ km.
Context. Hot subdwarfs experienced strong mass loss on the Red Giant Branch (RGB) and are now hot and small He-burning objects. Aims. In this project we aim to perform a transit survey in all available light curves of hot subdwarfs from space-based telescopes (Kepler, K2, TESS, and CHEOPS), with our custom-made pipeline SHERLOCK, in order to determine the occurrence rate of planets around these stars, as a function of orbital period and planetary radius. Methods. In this first paper, we perform injection-and-recovery tests of synthetic transits for a selection of representative Kepler, K2 and TESS light curves, to determine which transiting bodies, in terms of object radius and orbital period, we will be able to detect with our tools. We also provide such estimates for CHEOPS data, which we analyze with the pycheops package. Results. Transiting objects with a radius $lesssim$ 1.0 $R_{Earth}$ can be detected in most of Kepler, K2 and CHEOPS targets for the shortest orbital periods (1 d and below), reaching values as small as $sim$0.3 $R_{Earth}$ in the best cases. Reaching sub-Earth-sized bodies is achieved only for the brightest TESS targets, and the ones observed during a significant number of sectors. We also give a series of representative results for farther and bigger planets, for which the performances strongly depend on the target magnitude, the length and the quality of the data. Conclusions. The TESS sample will provide the most important statistics for the global aim of measuring the planet occurrence rate around hot subdwarfs. The Kepler, K2 and CHEOPS data will allow us to search for planetary remnants, i.e. very close and small (possibly disintegrating) objects, which would have partly survived the engulfment in their red giant host.
White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres, even though these elements should rapidly settle into the stellar interiors unless they are occasionally replenished. The abundance ratios of heavy elements in white dwarf atmospheres are similar to rocky bodies in the Solar system. This and the existence of warm dusty debris disks around about 4% of white dwarfs suggest that rocky debris from white dwarf progenitors planetary systems occasionally pollute the stars atmospheres. The total accreted mass can be comparable to that of large asteroids in the solar system. However, the process of disrupting planetary material has not yet been observed. Here, we report observations of a white dwarf being transited by at least one and likely multiple disintegrating planetesimals with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths up to 40% and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star hosts a dusty debris disk and the stars spectrum shows prominent lines from heavy elements like magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides evidence that heavy element pollution of white dwarfs can originate from disrupted rocky bodies such as asteroids and minor planets.
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks, or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted. Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs.
The detection of a dust disc around G29-38 and transits from debris orbiting WD1145+017 confirmed that the photospheric trace metals found in many white dwarfs arise from the accretion of tidally disrupted planetesimals. The composition of these planetesimals is similar to that of rocky bodies in the inner solar system. Gravitationally scattering planetesimals towards the white dwarf requires the presence of more massive bodies, yet no planet has so far been detected at a white dwarf. Here we report optical spectroscopy of a $simeq27,750$K hot white dwarf that is accreting from a circumstellar gaseous disc composed of hydrogen, oxygen, and sulphur at a rate of $simeq3.3times10^9,mathrm{g,s^{-1}}$. The composition of this disc is unlike all other known planetary debris around white dwarfs, but resembles predictions for the makeup of deeper atmospheric layers of icy giant planets, with H$_2$O and H$_2$S being major constituents. A giant planet orbiting a hot white dwarf with a semi-major axis of $simeq15$ solar radii will undergo significant evaporation with expected mass loss rates comparable to the accretion rate onto the white dwarf. The orbit of the planet is most likely the result of gravitational interactions, indicating the presence of additional planets in the system. We infer an occurrence rate of spectroscopically detectable giant planets in close orbits around white dwarfs of $simeq10^{-4}$.
Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals onto star-grazing orbits, in a manner that could pollute the white dwarfs atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few percent of an observed sample of white dwarfs with wide binary companions, independent of white dwarf age. This age independence is the key difference between this wide binary mechanism and others mechanisms suggested in the literature to explain white dwarf pollution. Current observational samples are not large enough to assess whether this mechanism makes a significant contribution to the population of polluted white dwarfs, for which better constraints on the wide binary population are required, such as those that will be obtained in the near future with Gaia.