Do you want to publish a course? Click here

Voltage-Controlled Reconfigurable Magnonic Crystal at the Submicron Scale

397   0   0.0 ( 0 )
 Added by Isabella Boventer
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiferroics offer an elegant means to implement voltage-control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nano-magnonics {color{black} is expected to} eventually lead to the large-scale integration of magnonic devices. However, a compact voltage-controlled, on demand reconfigurable magnonic system has yet to be shown. Here, we introduce the combination of multiferroics with ferromagnets in a fully epitaxial heterostructure to achieve such voltage-controlled and reconfigurable magnonic systems. Imprinting a remnant electrical polarization in thin multiferroic $mathrm{BiFeO_3}$ with a periodicity of $500,mathrm{nm}$ yields a modulation of the effective magnetic field in the micron-scale, ferromagnetic $mathrm{La_{2/3}Sr_{1/3}MnO_3}$ magnonic waveguide. We evidence the magneto-electrical coupling by characterizing the spin wave propagation spectrum in this artificial, voltage induced, magnonic crystal and demonstrate the occurrence of a robust magnonic bandgap with $>20 ,mathrm{dB}$ rejection.



rate research

Read More

101 - J. C. Gartside 2020
Strongly-interacting nanomagnetic arrays are crucial across an ever-growing suite of technologies. Spanning neuromorphic computing, control over superconducting vortices and reconfigurable magnonics, the utility and appeal of these arrays lies in their vast range of distinct, stable magnetisation states. Different states exhibit different functional behaviours, making precise, reconfigurable state control an essential cornerstone of such systems. However, few existing methodologies may reverse an arbitrary array element, and even fewer may do so under electrical control, vital for device integration. We demonstrate selective, reconfigurable magnetic reversal of ferromagnetic nanoislands via current-driven motion of a transverse domain wall in an adjacent nanowire. The reversal technique operates under all-electrical control with no reliance on external magnetic fields, rendering it highly suitable for device integration across a host of magnonic, spintronic and neuromorphic logic architectures. Here, the reversal technique is leveraged to realise two fully solid-state reconfigurable magnonic crystals, offering magnonic gating, filtering, transistor-like switching and peak-shifting without reliance on global magnetic fields.
In this work, we study experimentally by broadband ferromagnetic resonance measurements, the dependence of the spin-wave excitation spectra on the magnetic applied field in CoFeB meander-shaped films. Two different orientations of the external magnetic field were explored, namely parallel or perpendicular to the lattice cores. The interpretation of the field dependence of the frequency and spatial profiles of major spin-wave modes were obtained by micromagnetic simulations. We show that the vertical segments lead to the easy-axis type of magnetic anisotropy and support the in-phase and out-of-phase spin-wave precession amplitude in the vertical segments. The latter could potentially be used for the design of tunable metasurfaces or in magnetic memories based on meandering 3D magnetic films.
Over the past few years, the study of magnetization dynamics in artificial spin ices has become a vibrant field of study. Artificial spin ices are ensembles of geometrically arranged, interacting magnetic nanoislands, which display frustration by design. These were initially created to mimic the behavior in rare earth pyrochlore materials and to study emergent behavior and frustration using two-dimensional magnetic measurement techniques. Recently, it has become clear that it is possible to create artificial spin ices, which can potentially be used as functional materials. In this Perspective, we review the resonant behavior of spin ices (which is in the GHz frequency range), focusing on their potential application as magnonic crystals. In magnonic crystals, spin waves are functionalized for logic applications by means of band structure engineering. While it has been established that artificial spin ices can possess rich mode spectra, the applicability of spin ices to create magnonic crystals hinges upon their reconfigurability. Consequently, we describe recent work aiming to develop techniques and create geometries allowing full reconfigurability of the spin ice magnetic state. We also discuss experimental, theoretical, and numerical methods for determining the spectral response of artificial spin ices, and give an outlook on new directions for reconfigurable spin ices.
Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatially-resolved Brillouin light scattering microscopy. A rejection frequency band was clearly observed. The band gap frequency was controlled by the applied magnetic field. The measured spin-wave intensity as a function of frequency and propagation distance is in good agreement with a model calculation.
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT) /ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90 in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا