The method proposed by Inomata and his collaborators allows us to transform a damped Caldiroli-Kanai oscillator with time-dependent frequency to one with constant frequency and no friction by redefining the time variable, obtained by solving a Ermakov-Milne-Pinney equation. Their mapping Eisenhart-Duval lifts as a conformal transformation between two appropriate Bargmann spaces. The quantum propagator is calculated also by bringing the quadratic system to free form by another time-dependent Bargmann-conformal transformation which generalizes the one introduced before by Niederer and is related to the mapping proposed by Arnold. Our approach allows us to extend the Maslov phase correction to arbitrary time-dependent frequency. The method is illustrated by the Mathieu profile.
Singular Darboux transformations, in contrast to the conventional ones, have a singular matrix as a coefficient before the derivative. We incorporated such transformations into a chain of conventional transformations and presented determinant formulas for the resulting action of the chain. A determinant representation of the Kohlhoff-von Geramb solution to the Marchenko equation is given.
We make use of the conformal compactification of Minkowski spacetime $M^{#}$ to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime $[M^{#}]^{-1}$ obtained via conformal inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying $M^{#}$ with the projective light cone in $(4+2)$-dimensional spacetime, we write two independent conformal-invariant functionals of the $6$-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.
We study information theoretic geometry in time dependent quantum mechanical systems. First, we discuss global properties of the parameter manifold for two level systems exemplified by i) Rabi oscillations and ii) quenching dynamics of the XY spin chain in a transverse magnetic field, when driven across anisotropic criticality. Next, we comment upon the nature of the geometric phase from classical holonomy analyses of such parameter manifolds. In the context of the transverse XY model in the thermodynamic limit, our results are in contradiction to those in the existing literature, and we argue why the issue deserves a more careful analysis. Finally, we speculate on a novel geometric phase in the model, when driven across a quantum critical line.
We investigate the equal-time (static) quark propagator in Coulomb gauge within the Hamiltonian approach to QCD. We use a non-Gaussian vacuum wave functional which includes the coupling of the quarks to the spatial gluons. The expectation value of the QCD Hamiltonian is expressed by the variational kernels of the vacuum wave functional by using the canonical recursive Dyson--Schwinger equations (CRDSEs) derived previously. Assuming the Gribov formula for the gluon energy we solve the CRDSE for the quark propagator in the bare-vertex approximation together with the variational equations of the quark sector. Within our approximation the quark propagator is fairly insensitive to the coupling to the spatial gluons and its infrared behaviour is exclusively determined by the strongly infrared diverging instantaneous colour Coulomb potential.
We formulate a set of conditions under which dynamics of a time-dependent quantum Hamiltonian are integrable. The main requirement is the existence of a nonabelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time-dependence into various quantum integrable models, so that the resulting non-stationary Schrodinger equation is exactly solvable. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
Q.-L. Zhao
,P.-M. Zhang
,P. A. Horvathy
.
(2021)
.
"Time-dependent conformal transformations and the propagator for quadratic systems"
.
Peter Horvathy
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا