Do you want to publish a course? Click here

Measurements of $^{160}$Dy($p,gamma$) at energies relevant for astrophysical $gamma$ process

84   0   0.0 ( 0 )
 Added by Baohua Sun Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rare information on photodisintegration reactions of nuclei with mass numbers $A approx 160$ at astrophysical conditions impedes our understanding of the origin of $p$-nuclei. Experimental determination of the key ($p,gamma$) cross sections has been playing an important role to verify nuclear reaction models and to provide rates of relevant ($gamma,p$) reactions in $gamma$-process. In this paper we report the first cross section measurements of $^{160}$Dy($p,gamma$)$^{161}$Ho and $^{161}$Dy($p,n$)$^{161}$Ho in the beam energy range of 3.4 - 7.0 MeV, partially covering the Gamow window. Such determinations are possible by using two targets with various isotopic fractions. The cross section data can put a strong constraint on the nuclear level densities and gamma strength functions for $A approx$ 160 in the Hauser-Feshbach statistical model. Furthermore, we find the best parameters for TALYS that reproduce the A $thicksim$ 160 data available, $^{160}$Dy($p,gamma$)$^{161}$Ho and $^{162}$Er($p,gamma$)$^{163}$Tm, and recommend the constrained $^{161}$Ho($gamma,p$)$^{160}$Dy reaction rates over a wide temperature range for $gamma$-process network calculations. Although the determined $^{161}$Ho($gamma$, p) stellar reaction rates at the temperature of 1 to 2 GK can differ by up to one order of magnitude from the NON-SMOKER predictions, it has a minor effect on the yields of $^{160}$Dy and accordingly the $p$-nuclei, $^{156,158}$Dy. A sensitivity study confirms that the cross section of $^{160}$Dy($p$, $gamma$)$^{161}$Ho is measured precisely enough to predict yields of $p$-nuclei in the $gamma$-process.



rate research

Read More

The astrophysical S-factor of 14N(p,gamma)15O has been measured for effective center-of-mass energies between E_eff = 119 and 367 keV at the LUNA facility using TiN solid targets and Ge detectors. The data are in good agreement with previous and recent work at overlapping energies. R-matrix analysis reveals that due to the complex level structure of 15O the extrapolated S(0) value is model dependent and calls for additional experimental efforts to reduce the present uncertainty in S(0) to a level of a few percent as required by astrophysical calculations.
The synthesis of heavy, proton rich isotopes in the astrophysical gamma-process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128Ba(g,a)124Xe was found to affect the abundance of the p nucleus 124Xe. Since the stellar rate for this reaction cannot be determined by a measurement directly, the aim of the present work was to measure the cross section of the inverse 124Xe(a,g)128Ba reaction and to compare the results with statistical model predictions. Of great importance is the fact that data below the (a,n) threshold was obtained. Studying simultaneously the 124Xe(a,n)127Ba reaction channel at higher energy allowed to further identify the source of a discrepancy between data and prediction. The 124Xe + alpha cross sections were measured with the activation method using a thin window 124Xe gas cell. The studied energy range was between E = 11 and 15 MeV close above the astrophysically relevant energy range. The obtained cross sections are compared with statistical model calculations. The experimental cross sections are smaller than standard predictions previously used in astrophysical calculations. As dominating source of the difference, the theoretical alpha width was identified. The experimental data suggest an alpha width lower by at least a factor of 0.125 in the astrophysical energy range. An upper limit for the 128Ba(g,a)124Xe stellar rate was inferred from our measurement. The impact of this rate was studied in two different models for core-collapse supernova explosions of 25 solar mass stars. A significant contribution to the 124Xe abundance via this reaction path would only be possible when the rate was increased above the previous standard value. Since the experimental data rule this out, they also demonstrate the closure of this production path.
The total cross sections for the $^{152}$Gd(p,$gamma$)$^{153}$Tb and $^{152}$Gd(p,n)$^{152}$Tb reactions have been measured by the activation method at effective center-of-mass energies mbox{$3.47 leq E_mathrm{c.m.}^mathrm{eff}leq 7.94$ MeV} and mbox{$4.96 leq E_mathrm{c.m.}^mathrm{eff} leq 7.94$ MeV}, respectively. The targets were prepared by evaporation of 30.6% isotopically enriched $^{152}$Gd oxide on aluminum backing foils, and bombarded with proton beams provided by a cyclotron accelerator. The cross sections were deduced from the observed $gamma$-ray activity, which was detected off-line by a HPGe detector in a low background environment. The results are presented and compared with predictions of statistical model calculations. This comparison supports a modified optical proton+$^{152}$Gd potential suggested earlier.
109 - G.G. Kiss , Gy. Gyurky , Z. Elekes 2007
The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.
137 - Gy. Gyurky , Zs. Fulop , Z. Halasz 2014
In the model calculations of heavy element nucleosynthesis processes the nuclear reaction rates are taken from statistical model calculations which utilize various nuclear input parameters. It is found that in the case of reactions involving alpha particles the calculations bear a high uncertainty owing to the largely unknown low energy alpha-nucleus optical potential. Experiments are typically restricted to higher energies and therefore no direct astrophysical consequences can be drawn. In the present work a (p,alpha) reaction is used for the first time to study the alpha-nucleus optical potential. The measured 64Zn(p,alpha)61Cu cross section is uniquely sensitive to the alpha-nucleus potential and the measurement covers the whole astrophysically relevant energy range. By the comparison to model calculations, direct evidence is provided for the incorrectness of global optical potentials used in astrophysical models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا