Do you want to publish a course? Click here

Generalized Nearest Neighbor Decoding for MIMO Channels with Imperfect Channel State Information

80   0   0.0 ( 0 )
 Added by Wenyi Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Information transmission over a multiple-input-multiple-output (MIMO) fading channel with imperfect channel state information (CSI) is investigated, under a new receiver architecture which combines the recently proposed generalized nearest neighbor decoding rule (GNNDR) and a successive procedure in the spirit of successive interference cancellation (SIC). Recognizing that the channel input-output relationship is a nonlinear mapping under imperfect CSI, the GNNDR is capable of extracting the information embedded in the joint observation of channel output and imperfect CSI more efficiently than the conventional linear scheme, as revealed by our achievable rate analysis via generalized mutual information (GMI). Numerical results indicate that the proposed scheme achieves performance close to the channel capacity with perfect CSI, and significantly outperforms the conventional pilot-assisted scheme, which first estimates the CSI and then uses the estimated CSI as the true one for coherent decoding.



rate research

Read More

103 - Yizhu Wang , Wenyi Zhang 2020
It is well known that for linear Gaussian channels, a nearest neighbor decoding rule, which seeks the minimum Euclidean distance between a codeword and the received channel output vector, is the maximum likelihood solution and hence capacity-achieving. Nearest neighbor decoding remains a convenient and yet mismatched solution for general channels, and the key message of this paper is that the performance of the nearest neighbor decoding can be improved by generalizing its decoding metric to incorporate channel state dependent output processing and codeword scaling. Using generalized mutual information, which is a lower bound to the mismatched capacity under independent and identically distributed codebook ensemble, as the performance measure, this paper establishes the optimal generalized nearest neighbor decoding rule, under Gaussian channel input. Several suboptimal but reduced-complexity generalized nearest neighbor decoding rules are also derived and compared with existing solutions. The results are illustrated through several case studies for channels with nonlinear effects, and fading channels with receiver channel state information or with pilot-assisted training.
We study a noncoherent multiple-input multiple-output (MIMO) fading multiple-access channel (MAC), where the transmitters and the receiver are aware of the statistics of the fading, but not of its realisation. We analyse the rate region that is achievable with nearest neighbour decoding and pilot-assisted channel estimation and determine the corresponding pre-log region, which is defined as the limiting ratio of the rate region to the logarithm of the SNR as the SNR tends to infinity.
Channel matrix sparsification is considered as a promising approach to reduce the progressing complexity in large-scale cloud-radio access networks (C-RANs) based on ideal channel condition assumption. In this paper, the research of channel sparsification is extend to practical scenarios, in which the perfect channel state information (CSI) is not available. First, a tractable lower bound of signal-to-interferenceplus-noise ratio (SINR) fidelity, which is defined as a ratio of SINRs with and without channel sparsification, is derived to evaluate the impact of channel estimation error. Based on the theoretical results, a Dinkelbach-based algorithm is proposed to achieve the global optimal performance of channel matrix sparsification based on the criterion of distance. Finally, all these results are extended to a more challenging scenario with pilot contamination. Finally, simulation results are shown to evaluate the performance of channel matrix sparsification with imperfect CSIs and verify our analytical results.
We study the information rates of non-coherent, stationary, Gaussian, multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbour decoding and pilot-aided channel estimation. In particular, we analyse the behaviour of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity. We demonstrate that nearest neighbour decoding and pilot-aided channel estimation achieves the capacity pre-log - which is defined as the limiting ratio of the capacity to the logarithm of SNR as the SNR tends to infinity - of non-coherent multiple-input single-output (MISO) flat-fading channels, and it achieves the best so far known lower bound on the capacity pre-log of non-coherent MIMO flat-fading channels.
164 - Jialing Liu , Nicola Elia , 2010
In this paper, we propose capacity-achieving communication schemes for Gaussian finite-state Markov channels (FSMCs) subject to an average channel input power constraint, under the assumption that the transmitters can have access to delayed noiseless output feedback as well as instantaneous or delayed channel state information (CSI). We show that the proposed schemes reveals connections between feedback communication and feedback control.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا