No Arabic abstract
This paper studies network resilience against structured additive perturbations to its topology. We consider dynamic networks modeled as linear time-invariant systems subject to perturbations of bounded energy satisfying specific sparsity and entry-wise constraints. Given an energy level, the structured pseudospectral abscissa captures the worst-possible perturbation an adversary could employ to de-stabilize the network, and the structured stability radius is the maximum energy in the structured perturbation that the network can withstand without becoming unstable. Building on a novel characterization of the worst-case structured perturbation, we propose iterative algorithms that efficiently compute the structured pseudospectral abscissa and structured stability radius. We provide theoretical guarantees of the local convergence of the algorithms and illustrate their efficacy and accuracy on several network examples.
In this paper, we consider the privacy preservation problem in both discrete- and continuous-time average consensus algorithms with strongly connected and balanced graphs, against either internal honest-but-curious agents or external eavesdroppers. A novel algorithm is proposed, which adds edge-based perturbation signals to the process of consensus computation. Our algorithm can be divided into two phases: a coordinated scrambling phase, which is for privacy preservation, and a convergence phase. In the scrambling phase, each agent is required to generate some perturbation signals and add them to the edges leading out of it. In the convergence phase, the agents update their states following a normal updating rule. It is shown that an internal honest-but-curious agent can obtain the privacy of a target agent if and only if no other agents can communicate with the target agent.
A structured preconditioned conjugate gradient (PCG) solver is developed for the Newton steps in second-order methods for a class of constrained network optimal control problems. Of specific interest are problems with discrete-time dynamics arising from the path-graph interconnection of $N$ heterogeneous sub-systems. The computational complexity of each PGC step is shown to be $O(NT)$, where $T$ is the length of the time horizon. The proposed preconditioning involves a fixed number of block Jacobi iterations per PCG step. A decreasing analytic bound on the effective conditioning is given in terms of this number. The computations are decomposable across the spatial and temporal dimensions of the optimal control problem, into sub-problems of size independent of $N$ and $T$. Numerical results are provided for a mass-spring-damper chain.
This paper considers the multi-agent reinforcement learning (MARL) problem for a networked (peer-to-peer) system in the presence of Byzantine agents. We build on an existing distributed $Q$-learning algorithm, and allow certain agents in the network to behave in an arbitrary and adversarial manner (as captured by the Byzantine attack model). Under the proposed algorithm, if the network topology is $(2F+1)$-robust and up to $F$ Byzantine agents exist in the neighborhood of each regular agent, we establish the almost sure convergence of all regular agents value functions to the neighborhood of the optimal value function of all regular agents. For each state, if the optimal $Q$-values of all regular agents corresponding to different actions are sufficiently separated, our approach allows each regular agent to learn the optimal policy for all regular agents.
State estimation is a data processing algorithm for converting redundant meter measurements and other information into an estimate of the state of a power system. Relying heavily on meter measurements, state estimation has proven to be vulnerable to cyber attacks. In this paper, a novel targeted false data injection attack (FDIA) model against AC state estimation is proposed. Leveraging on the intrinsic load dynamics in ambient conditions and important properties of the Ornstein-Uhlenbeck process, we, from the viewpoint of intruders, design an algorithm to extract power network parameters purely from PMU data, which are further used to construct the FDIA vector. Requiring no network parameters and relying only on limited phasor measurement unit (PMU) data, the proposed FDIA model can target specific states and launch large deviation attacks. Sufficient conditions for the proposed FDIA model are also developed. Various attack vectors and attacking regions are studied in the IEEE 39-bus system, showing that the proposed FDIA method can successfully bypass the bad data detection and launch targeted large deviation attacks with very high probabilities.
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.