Do you want to publish a course? Click here

Breaching the limit: formation of GW190521-like and IMBH mergers in young massive clusters

172   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The LIGO-Virgo-Kagra collaboration (LVC) discovered recently GW190521, a gravitational wave (GW) source associated with the merger between two black holes (BHs) with mass $66$ M$_odot$ and $>85$ M$_odot$. GW190521 represents the first BH binary (BBH) merger with a primary mass falling in the upper mass-gap and the first leaving behind a $sim 150$ M$_odot$ remnant. So far, the LVC reported the discovery of four further mergers having a total mass $>100$ M$_odot$, i.e. in the intermediate-mass black holes (IMBH) mass range. Here, we discuss results from a series of 80 $N$-body simulations of young massive clusters (YMCs) that implement relativistic corrections to follow compact object mergers. We discover the development of a GW190521-like system as the result of a 3rd-generation merger, and four IMBH-BH mergers with total mass $~(300-350)$ M$_odot$. We show that these IMBH-BH mergers are low-frequency GW sources detectable with LISA and DECIGO out to redshift $z=0.01-0.1$ and $z>100$, and we discuss how their detection could help unravelling IMBH natal spins. For the GW190521 test case, we show that the 3rd-generation merger remnant has a spin and effective spin parameter that matches the $90%$ credible interval measured for GW190521 better than a simpler double merger and comparably to a single merger. Due to GW recoil kicks, we show that retaining the products of these mergers require birth-sites with escape velocities $gtrsim 50-100$ km s$^{-1}$, values typically attained in galactic nuclei and massive clusters with steep density profiles.



rate research

Read More

LIGO and Virgo have reported the detection of GW190521, from the merger of a binary black hole (BBH) with a total mass around $150$ M$_odot$. While current stellar models limit the mass of any black hole (BH) remnant to about $40 - 50$ M$_odot$, more massive BHs can be produced dynamically through repeated mergers in the core of a dense star cluster. The process is limited by the recoil kick (due to anisotropic emission of gravitational radiation) imparted to merger remnants, which can escape the parent cluster, thereby terminating growth. We study the role of the host cluster metallicity and escape speed in the buildup of massive BHs through repeated mergers. Almost independent of host metallicity, we find that a BBH of about $150$ M$_odot$ could be formed dynamically in any star cluster with escape speed $gtrsim 200$ km s$^{-1}$, as found in galactic nuclear star clusters as well as the most massive globular clusters and super star clusters. Using an inspiral-only waveform, we compute the detection probability for different primary masses ($ge 60$ M$_odot$) as a function of secondary mass and find that the detection probability increases with secondary mass and decreases for larger primary mass and redshift. Future additional detections of massive BBH mergers will be of fundamental importance for understanding the growth of massive BHs through dynamics and the formation of intermediate-mass BHs.
133 - Manuel Arca Sedda 2020
The detection of gravitational waves emitted during a neutron star - black hole merger and the associated electromagnetic counterpart will provide a wealth of information about stellar evolution nuclear matter, and General Relativity. While the theoretical framework about neutron star - black hole binaries formed in isolation is well established, the picture is loosely constrained for those forming via dynamical interactions. Here, we use N-body simulations to show that mergers forming in globular and nuclear clusters could display distinctive marks compared to isolated mergers, namely larger masses, heavier black holes, and the tendency to have no associated electromagnetic counterpart. These features could represent a useful tool to interpreting forthcoming observations. In the Local Universe, gravitational waves emitted from dynamical mergers could be unravelled by detectors sensitive in the decihertz frequency band, while those occurring at the distance range of Andromeda and the Virgo Cluster could be accessible to lower-frequency detectors like LISA.
Young massive clusters (YMCs) are the most intense regions of star formation in galaxies. Formulating a model for YMC formation whilst at the same time meeting the constraints from observations is highly challenging however. We show that forming YMCs requires clouds with densities $gtrsim$ 100 cm$^{-3}$ to collide with high velocities ($gtrsim$ 20 km s$^{-1}$). We present the first simulations which, starting from moderate cloud densities of $sim100$ cm$^{-3}$, are able to convert a large amount of mass into stars over a time period of around 1 Myr, to produce dense massive clusters similar to those observed. Such conditions are commonplace in more extreme environments, where YMCs are common, but atypical for our Galaxy, where YMCs are rare.
Star clusters appear to be the ideal environment for the assembly of neutron star-neutron star (NS-NS) and black hole-neutron star (BH-NS) binaries. These binaries are among the most interesting astrophysical objects, being potential sources of gravitational waves (GWs) and gamma-ray bursts. We use for the first time high-precision N-body simulations of young massive and open clusters to study the origin and dynamical evolution of NSs, within clusters with different initial masses, metallicities, primordial binary fractions, and prescriptions for the compact object natal kicks at birth. We find that the radial profile of NSs is shaped by the BH content of the cluster, which partially quenches the NS segregation due to the BH-burning process. This leaves most of the NSs out of the densest cluster regions, where NS-NS and BH-NS binaries could potentially form. Due to a large velocity kick that they receive at birth, most of the NSs escape the host clusters, with the bulk of their retained population made up of NSs of $sim 1.3$ M$_odot$ coming from the electron-capture supernova process. The details of the primordial binary fraction and pairing can smear out this trend. Finally, we find that a subset of our models produce NS-NS mergers, leading to a rate of $sim 0.01$--$0.1$ Gpc$^{-3}$ yr$^{-1}$ in the local Universe, and compute an upper limit of $sim 3times 10^{-2}$--$3times 10^{-3}$ Gpc$^{-3}$ yr$^{-1}$ for the BH-NS merger rate. Our estimates are several orders of magnitude smaller than the current empirical merger rate from LIGO/Virgo, in agreement with the recent rate estimates for old globular clusters.
The formation environment of stars in massive stellar clusters is similar to the environment of stars forming in galaxies at a redshift of 1 - 3, at the peak star formation rate density of the Universe. As massive clusters are still forming at the present day at a fraction of the distance to high-redshift galaxies they offer an opportunity to understand the processes controlling star formation and feedback in conditions similar to those in which most stars in the Universe formed. Here we describe a system of massive clusters and their progenitor gas clouds in the centre of the Milky Way, and outline how detailed observations of this system may be able to: (i) help answer some of the fundamental open questions in star formation and (ii) quantify how stellar feedback couples to the surrounding interstellar medium in this high-pressure, high-redshift analogue environment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا