Quantum coherence is a fundamental property of quantum systems, separating quantum from classical physics. Recently, there has been significant interest in the characterization of quantum coherence as a resource, investigating how coherence can be extracted and used for quantum technological applications. In this work we review the progress of this research, focusing in particular on recent experimental efforts. After a brief review of the underlying theory we discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems. We then consider experimental detection and quantification of coherence, experimental state conversion and coherence distillation, and experiments investigating the dynamics of quantum coherence. We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements. Experimental efforts on multipartite and multilevel coherence are also discussed.