Quantum constraint learning for quantum approximate optimization algorithm


Abstract in English

The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems poses a major challenge in the extensions of QAOA to support relevant larger scale problems. In this paper, we introduce a quantum machine learning approach to learn the mixer Hamiltonian that is required to hard constrain the search subspace. We show that this method can be used for encoding any general form of constraints. By using a form of an adaptable ansatz, one can directly plug the learnt unitary into the QAOA framework. This procedure gives the flexibility to control the depth of the circuit at the cost of accuracy of enforcing the constraint, thus having immediate application in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constrains. Finally using this metric, we evaluate the performance of the proposed algorithm.

Download