Do you want to publish a course? Click here

Reasons, Challenges and Some Tools for Doing Reproducible Research in Transportation Research

82   0   0.0 ( 0 )
 Added by Zuduo Zheng
 Publication date 2021
and research's language is English
 Authors Zuduo Zheng




Ask ChatGPT about the research

This paper introduces reproducible research, and explains its importance, benefits and challenges. Some important tools for conducting reproducible research in Transportation Research are also introduced. Moreover, the source code for generating this paper has been designed in a way so that it can be used as a template for researchers to write their future journal papers as dynamic and reproducible documents.



rate research

Read More

Reproducibility of computational studies is a hallmark of scientific methodology. It enables researchers to build with confidence on the methods and findings of others, reuse and extend computational pipelines, and thereby drive scientific progress. Since many experimental studies rely on computational analyses, biologists need guidance on how to set up and document reproducible data analyses or simulations. In this paper, we address several questions about reproducibility. For example, what are the technical and non-technical barriers to reproducible computational studies? What opportunities and challenges do computational notebooks offer to overcome some of these barriers? What tools are available and how can they be used effectively? We have developed a set of rules to serve as a guide to scientists with a specific focus on computational notebook systems, such as Jupyter Notebooks, which have become a tool of choice for many applications. Notebooks combine detailed workflows with narrative text and visualization of results. Combined with software repositories and open source licensing, notebooks are powerful tools for transparent, collaborative, reproducible, and reusable data analyses.
Scientific software registries and repositories serve various roles in their respective disciplines. These resources improve software discoverability and research transparency, provide information for software citations, and foster preservation of computational methods that might otherwise be lost over time, thereby supporting research reproducibility and replicability. However, developing these resources takes effort, and few guidelines are available to help prospective creators of registries and repositories. To address this need, we present a set of nine best practices that can help managers define the scope, practices, and rules that govern individual registries and repositories. These best practices were distilled from the experiences of the creators of existing resources, convened by a Task Force of the FORCE11 Software Citation Implementation Working Group during the years 2019-2020. We believe that putting in place specific policies such as those presented here will help scientific software registries and repositories better serve their users and their disciplines.
Targeted Learning is a subfield of statistics that unifies advances in causal inference, machine learning and statistical theory to help answer scientifically impactful questions with statistical confidence. Targeted Learning is driven by complex problems in data science and has been implemented in a diversity of real-world scenarios: observational studies with missing treatments and outcomes, personalized interventions, longitudinal settings with time-varying treatment regimes, survival analysis, adaptive randomized trials, mediation analysis, and networks of connected subjects. In contrast to the (mis)application of restrictive modeling strategies that dominate the current practice of statistics, Targeted Learning establishes a principled standard for statistical estimation and inference (i.e., confidence intervals and p-values). This multiply robust approach is accompanied by a guiding roadmap and a burgeoning software ecosystem, both of which provide guidance on the construction of estimators optimized to best answer the motivating question. The roadmap of Targeted Learning emphasizes tailoring statistical procedures so as to minimize their assumptions, carefully grounding them only in the scientific knowledge available. The end result is a framework that honestly reflects the uncertainty in both the background knowledge and the available data in order to draw reliable conclusions from statistical analyses - ultimately enhancing the reproducibility and rigor of scientific findings.
The Open Research Knowledge Graph (ORKG) provides machine-actionable access to scholarly literature that habitually is written in prose. Following the FAIR principles, the ORKG makes traditional, human-coded knowledge findable, accessible, interoperable, and reusable in a structured manner in accordance with the Linked Open Data paradigm. At the moment, in ORKG papers are described manually, but in the long run the semantic depth of the literature at scale needs automation. Operational Research is a suitable test case for this vision because the mathematical field and, hence, its publication habits are highly structured: A mundane problem is formulated as a mathematical model, solved or approximated numerically, and evaluated systematically. We study the existing literature with respect to the Assembly Line Balancing Problem and derive a semantic description in accordance with the ORKG. Eventually, selected papers are ingested to test the semantic description and refine it further.
We describe the current state and future plans for a set of tools for scientific data management (SDM) designed to support scientific transparency and reproducible research. SDM has been in active use at our MRI Center for more than two years. We designed the system to be used from the beginning of a research project, which contrasts with conventional end-state databases that accept data as a project concludes. A number of benefits accrue from using scientific data management tools early and throughout the project, including data integrity as well as reuse of the data and of computational methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا