Multiplexed quantum repeaters based on dual-species trapped-ion systems


Abstract in English

Trapped ions form an advanced technology platform for quantum information processing with long qubit coherence times, high-fidelity quantum logic gates, optically active qubits, and a potential to scale up in size while preserving a high level of connectivity between qubits. These traits make them attractive not only for quantum computing but also for quantum networking. Dedicated, special-purpose trapped-ion processors in conjunction with suitable interconnecting hardware can be used to form quantum repeaters that enable high-rate quantum communications between distant trapped-ion quantum computers in a network. In this regard, hybrid traps with two distinct species of ions, where one ion species can generate ion-photon entanglement that is useful for optically interfacing with the network and the other has long memory lifetimes, useful for qubit storage, has been previously proposed for the distribution of quantum entanglement over the network. We consider an architecture for a repeater based on such a dual-species trapped-ion system. We propose protocols based on spatial and temporal mode multiplexing for entanglement distribution across a line network of such repeaters. Our protocols offer enhanced performance over previously analyzed protocols for such repeaters.

Download