Do you want to publish a course? Click here

Consumer, Commercial and Industrial IoT (In)Security: Attack Taxonomy and Case Studies

83   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Internet of Things (IoT) devices are becoming ubiquitous in our lives, with applications spanning from the consumer domain to commercial and industrial systems. The steep growth and vast adoption of IoT devices reinforce the importance of sound and robust cybersecurity practices during the device development life-cycles. IoT-related vulnerabilities, if successfully exploited can affect, not only the device itself, but also the application field in which the IoT device operates. Evidently, identifying and addressing every single vulnerability is an arduous, if not impossible, task. Attack taxonomies can assist in classifying attacks and their corresponding vulnerabilities. Security countermeasures and best practices can then be leveraged to mitigate threats and vulnerabilities before they emerge into catastrophic attacks and ensure overall secure IoT operation. Therefore, in this paper, we provide an attack taxonomy which takes into consideration the different layers of IoT stack, i.e., device, infrastructure, communication, and service, and each layers designated characteristics which can be exploited by adversaries. Furthermore, using nine real-world cybersecurity incidents, that had targeted IoT devices deployed in the consumer, commercial, and industrial sectors, we describe the IoT-related vulnerabilities, exploitation procedures, attacks, impacts, and potential mitigation mechanisms and protection strategies. These (and many other) incidents highlight the underlying security concerns of IoT systems and demonstrate the potential attack impacts of such connected ecosystems, while the proposed taxonomy provides a systematic procedure to categorize attacks based on the affected layer and corresponding impact.



rate research

Read More

In this paper, we present an end-to-end view of IoT security and privacy and a case study. Our contribution is three-fold. First, we present our end-to-end view of an IoT system and this view can guide risk assessment and design of an IoT system. We identify 10 basic IoT functionalities that are related to security and privacy. Based on this view, we systematically present security and privacy requirements in terms of IoT system, software, networking and big data analytics in the cloud. Second, using the end-to-end view of IoT security and privacy, we present a vulnerability analysis of the Edimax IP camera system. We are the first to exploit this system and have identified various attacks that can fully control all the cameras from the manufacturer. Our real-world experiments demonstrate the effectiveness of the discovered attacks and raise the alarms again for the IoT manufacturers. Third, such vulnerabilities found in the exploit of Edimax cameras and our previous exploit of Edimax smartplugs can lead to another wave of Mirai attacks, which can be either botnets or worm attacks. To systematically understand the damage of the Mirai malware, we model propagation of the Mirai and use the simulations to validate the modeling. The work in this paper raises the alarm again for the IoT device manufacturers to better secure their products in order to prevent malware attacks like Mirai.
Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.
Artificial Intelligence has made a significant contribution to autonomous vehicles, from object detection to path planning. However, AI models require a large amount of sensitive training data and are usually computationally intensive to build. The commercial value of such models motivates attackers to mount various attacks. Adversaries can launch model extraction attacks for monetization purposes or step-ping-stone towards other attacks like model evasion. In specific cases, it even results in destroying brand reputation, differentiation, and value proposition. In addition, IP laws and AI-related legalities are still evolving and are not uniform across countries. We discuss model extraction attacks in detail with two use-cases and a generic kill-chain that can compromise autonomous cars. It is essential to investigate strategies to manage and mitigate the risk of model theft.
The successful amalgamation of cryptocurrency and consumer Internet of Things (IoT) devices can pave the way for novel applications in machine-to-machine economy. However, the lack of scalability and heavy resource requirements of initial blockchain designs hinders the integration as they prioritized decentralization and security. Numerous solutions have been proposed since the emergence of Bitcoin to achieve this goal. However, none of them seem to dominate and thus it is unclear how consumer devices will be adopting these approaches. Therefore, in this paper, we critically review the existing integration approaches and cryptocurrency designs that strive to enable micro-payments among consumer devices. We identify and discuss solutions under three main categories; direct integration, payment channel network and new cryptocurrency design. The first approach utilizes a full node to interact with the payment system. Offline channel payment is suggested as a second layer solution to solve the scalability issue and enable instant payment with low fee. New designs converge to semi-centralized scheme and focuson lightweight consensus protocol that does not require highcomputation power which might mean loosening the initial designchoices in favor of scalability. We evaluate the pros and cons ofeach of these approaches and then point out future researchchallenges. Our goal is to help researchers and practitioners tobetter focus their efforts to facilitate micro-payment adoptions.
Internet of Things (IoT) consists of a large number of devices connected through a network, which exchange a high volume of data, thereby posing new security, privacy, and trust issues. One way to address these issues is ensuring data confidentiality using lightweight encryption algorithms for IoT protocols. However, the design and implementation of such protocols is an error-prone task; flaws in the implementation can lead to devastating security vulnerabilities. Here we propose a new verification approach named Encryption-BMC and Fuzzing (EBF), which combines Bounded Model Checking (BMC) and Fuzzing techniques to check for security vulnerabilities that arise from concurrent implementations of cyrptographic protocols, which include data race, thread leak, arithmetic overflow, and memory safety. EBF models IoT protocols as a client and server using POSIX threads, thereby simulating both entities communication. It also employs static and dynamic verification to cover the systems state-space exhaustively. We evaluate EBF against three benchmarks. First, we use the concurrency benchmark from SV-COMP and show that it outperforms other state-of-the-art tools such as ESBMC, AFL, Lazy-CSeq, and TSAN with respect to bug finding. Second, we evaluate an open-source implementation called WolfMQTT. It is an MQTT client implementation that uses the WolfSSL library. We show that tool detects a data race bug, which other approaches are unable to find. Third, to show the effectiveness of EBF, we replicate some known vulnerabilities in OpenSSL and CyaSSL (lately WolfSSL) libraries. EBF can detect the bugs in minimum time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا