No Arabic abstract
Power grids are traditionally dominated by synchronous generators (SGs) but are currently undergoing a major transformation through the increasing integration of inverter-based resources (IBRs). The SG-dominated grid is traditionally analyzed in a mechanical-centric view which ignores fast electrical dynamics and focuses on the torque-speed dynamics. By contrast, analysis of the emergent IBR-dominated grid usually takes the electrical-centric view which focuses on the voltage-current interaction. In this article, a port-mapping method is proposed to fill the gap between these approaches and combine them in a unified model. Specifically, the mechanical dynamics are mapped to the electrical impedance seen at the electrical port; and the electrical dynamics are also mapped to the torque coefficient seen at the mechanical port. The bidirectional mapping gives additional flexibility and insights to analyze the sub-system interactions in whole-system dynamics and guide the tuning of parameter. Application of the proposed method is illustrated in three cases with increasing scales, namely a single-SG-infinite-bus system, a single-IBR-weak-grid system, and a modified IEEE 14-bus SG-IBR composite system.
In modern power grids, a local failure or attack can trigger catastrophic cascading failures, which make it challenging to assess the attack vulnerability of power grids. In this Brief, we define the $K$-link attack problem and study the attack vulnerability of power grids under cascading failures. Particularly, we propose a link centrality measure based on both topological and electrical properties of power grids. According to this centrality, we propose a greedy attack algorithm and an optimal attack algorithm. Simulation results on standard IEEE bus test data show that the optimal attack is better than the greedy attack and the traditional PSO-based attack in fracturing power grids. Moreover, the greedy attack has smaller computational complexity than the optimal attack and the PSO-based attack with an adequate attack efficiency. Our work helps to understand the vulnerability of power grids and provides some clues for securing power grids.
A major concern associated to the massive connection of distributed energy resources is the increasing share of power electronic interfaces resulting in the global inertia reduction of power systems. The recent literature advocated the use of voltage source converter (VSC) interfaced battery energy storage system (BESS) as a potential way to counterbalance this lack of inertia. However, the impact of VSCs on the dynamics of reduced-inertia grids is not well understood especially with respect to large transmission grids interfacing a mix of rotating machines and resources interfaced with power electronics. In this regards, we propose an extension of the IEEE 39-bus test network used to quantify the impact of VSCs on reduced-inertia grids. In this respect, a reduced-inertia 39-bus system is obtained by replacing 4 synchronous generators in the original 10-synchronous machine system, with 4 wind power plants modeled as aggregated type-3 wind turbines. Then, a large-scale BESS is integrated into the reduced-inertia network via a three-level neutral-point clamped (NPC) converter, thereby to be used for studying the impact of VSC on the dynamics of the inertia-reduced power system, as well as for comparing different VSC controls. The proposed models are implemented on a real-time simulator to conduct post-contingency analysis, respectively, for the original power system and the reduced-inertia one, with and without the BESS-VSC.
The frequent occurrences of cascading failures in power grids have been receiving continuous attention in recent years. An urgent task for us is to understand the cascading failure vulnerability of power grids against various kinds of attacks. We consider a cost restrained hybrid attack problem in power grids, in which both nodes and links are targeted with a limited total attack cost. We propose an attack centrality metric for a component (node or link) based on the consequence and cost of the removal of the component. Depending on the width of cascading failures considered, the attack centrality can be a local or global attack centrality. With the attack centrality, we further provide a greedy hybrid attack, and an optimal hybrid attack with the Particle Swarm Optimization (PSO) framework. Simulation results on IEEE bus test data show that the optimal hybrid attack is more efficient than the greedy hybrid attack. Furthermore, we find counterintuitively that the local centrality based algorithms are better than the global centrality based ones when the cost constraint is considered in the attack problem.
Sensing and measurement systems are quintessential to the safe and reliable operation of electric power grids. Their strategic placement is of ultimate importance because it is not economically viable to install measurement systems on every node and branch of a power grid, though they need to be monitored. An overwhelming number of strategies have been developed to meet oftentimes multiple conflicting objectives. The prime challenge in formulating the problem lies in developing a heuristic or an optimization model that, though mathematically tractable and constrained in cost, leads to trustworthy technical solutions. Further, large-scale, long-term deployments pose additional challenges because the boundary conditions change as technologies evolve. For instance, the advent of new technologies in sensing and measurement, as well as in communications and networking, might impact the cost and performance of available solutions and shift initially set conditions. Also, the placement strategies developed for transmission grids might not be suitable for distribution grids, and vice versa, because of unique characteristics. Therefore, the strategies need to be flexible, to a certain extent, because no two power grids are alike. Despite the extensive literature on the present topic, the focus of published works tends to be on a specific subject, such as the optimal placement of measurements to ensure observability in transmission grids. There is a dearth of work providing a comprehensive picture for developing optimal placement strategies. Because of the ongoing efforts on the modernization of electric power grids, there is a need to consolidate the status quo while exposing its limitations to inform policymakers, industry stakeholders, and researchers on the research-and-development needs to push the boundaries for innovation.
Global warming leads the world to think of a different way of transportation: avoiding internal combustion engines and electrifying the transportation sector. With a high penetration of electric vehicle (EV) charging stations on an existing power distribution network, the impact may be consistent. The loads of the fast-charging stations would potentially result in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. The degrading performance of the power system due to the negative impact of the EV charging stations can even lead to penalties to be paid by the distribution system operator (DSO). This paper: i) investigates the impact of the ac{ev} charging station on the distribution network for what concerns voltage drop on MV feeders and loading of transformers in primary substations, and ii) proposes a mitigation mechanism. A realistic typical Italian grid has been used to assess the impact of EV charging stations and to validate the mitigation mechanism.