Do you want to publish a course? Click here

Neutral CGM as damped Ly{alpha} absorbers at high redshift

176   0   0.0 ( 0 )
 Added by Jonathan Stern
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent searches for the hosts of high-redshift ($z sim 4$) damped Ly$alpha$ absorbers (DLAs) have detected bright galaxies at distances of tens of kpc from the DLA. Using the FIRE-2 cosmological zoom simulations, we argue that these relatively large distances are due to a predominantly cool and neutral inner circumgalactic medium (CGM) surrounding high-redshift galaxies. The inner CGM is cool because of the short cooling time of hot gas in $lesssim10^{12}$ Msun halos, which implies that accretion and feedback energy are radiated quickly, while it is neutral due to the high volume densities and column densities at high redshift which shield cool gas from photoionization. Our analysis predicts large DLA covering factors ($gtrsim50%$) out to impact parameters $sim0.3((1 + z)/5)^{3/2} R_{rm vir}$ from the central galaxies at $z > 1$, equivalent to a physical distance of $sim 21 M_{12}^{1/3} ((1 + z)/5)^{1/2}$ kpc ($R_{rm vir}$ and $M_{12}$ are the halo virial radius and mass in units of $10^{12}$ Msun, respectively). This implies that DLA covering factors at $z sim 4$ may be comparable to unity out to a distance $sim 10$ times larger than stellar half-mass radii. A predominantly neutral inner CGM in the early universe suggests that its mass and metallicity can be directly constrained by CGM absorption surveys, without resorting to large ionization corrections as required for ionized CGM.



rate research

Read More

187 - Tayyaba Zafar 2014
Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. DLA and sub-DLA systems with typical metallicities of -3.0<Z/Z_sun<-0.5 are excellent tools to study nitrogen production. We made a search for nitrogen in the ESO-UVES advanced data products (EUADP) database. In the EUADP database, we find 10 new measurements and 9 upper limits of nitrogen. We further compiled DLA/sub-DLA data from the literature with estimates available of nitrogen and alpha-elements. This yields a total of 98 systems, i.e. the largest nitrogen abundance sample investigated so far. In agreement with previous studies, we indeed find a bimodal [N/alpha] behaviour: three-quarter systems show a mean value of [N/alpha]=-0.87 with a scatter of 0.21 dex and one-quarter shows ratios clustered at [N/alpha]=-1.43 with a lower dispersion of 0.13 dex. The high [N/alpha] group is consistent with the blue compact dwarves and dwarf irregular galaxies, suggesting primary nitrogen production. The low [N/alpha] group is the lowest ever observed in any astrophysical site and probably provides an evidence of the primary production by fast rotating massive stars in young sites. Moreover, we find a transition between the two [N/alpha] groups around [N/H]=-2.5. The transition is not abrupt and there are a few systems lying in the transition region. Additional observations of DLAs/sub-DLAs below [N/H]<-2.5 would provide more clues.
159 - Masami Ouchi 2020
In this series of lectures, I review our observational understanding of high-$z$ Ly$alpha$ emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at $zsim 0$ to $zsim 10$. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-$z$ galaxies, high-$z$ analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Ly$alpha$ sources extended over $sim 10-100$ kpc, dubbed Ly$alpha$ blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Ly$alpha$ damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $(r-i)$ colours of QSOs and rest equivalent width of Si II$lambda$1526 line (i.e., $W_{1526}$). For the full sample, we find $L_{rm Lyalpha}$$< 10^{41} (3sigma) rm erg s^{-1}$ with a $2.8sigma$ level detection of Ly$alpha$ emission in the red part of the DLA trough. The $L_{rm Lyalpha}$ is found to be higher for systems with higher $W_{1526}$ with its peak, detected at $geq 3sigma$, redshifted by about 300-400 $rm km s^{-1}$ with respect to the systemic absorption redshift, as seen in Lyman Break Galaxies (LBGs) and Ly$alpha$ emitters. A clear signature of a double-hump Ly$alpha$ profile is seen when we consider $W_{1526} ge 0.4$ AA and $(r-i) < 0.05$. Based on the known correlation between metallicity and $W_{1526}$, we interpret our results in terms of star formation rate (SFR) being higher in high metallicity (mass) galaxies with high velocity fields that facilitates easy Ly$alpha$ escape. The measured Ly$alpha$ surface brightness requires local ionizing radiation that is 4 to 10 times stronger than the metagalactic UV background at these redshifts. The relationship between the SFR and surface mass density of atomic gas seen in DLAs is similar to that of local dwarf and metal poor galaxies. We show that the low luminosity galaxies will contribute appreciably to the stacked spectrum if the size-luminosity relation seen for H I at low-$z$ is also present at high-$z$. Alternatively, large Ly$alpha$ halos seen around LBGs could also explain our measurements.
We present spectroscopic observations of six high redshift ($z_{rm em}$ $>$ 2) quasars, which have been selected for their Lyman $alpha$ (Ly$alpha$) emission region being only partially covered by a strong proximate ($z_{rm abs}$ $sim$ $z_{rm em}$) coronagraphic damped Ly$alpha$ system (DLA). We detected spatially extended Ly$alpha$ emission envelopes surrounding these six quasars, with projected spatial extent in the range 26 $le$ $d_{rm Lyalpha}$ $le$ 51 kpc. No correlation is found between the quasar ionizing luminosity and the Ly$alpha$ luminosity of their extended envelopes. This could be related to the limited covering factor of the extended gas and/or due to the AGN being obscured in other directions than towards the observer. Indeed, we find a strong correlation between the luminosity of the envelope and its spatial extent, which suggests that the envelopes are probably ionized by the AGN. The metallicity of the coronagraphic DLAs is low and varies in the range $-$1.75 $<$ [Si/H] $<$ $-$0.63. Highly ionized gas is observed to be associated with most of these DLAs, probably indicating ionization by the central AGN. One of these DLAs has the highest AlIII/SiII ratio ever reported for any intervening and/or proximate DLA. Most of these DLAs are redshifted with respect to the quasar, implying that they might represent infalling gas probably accreted onto the quasar host galaxies through filaments.
We searched quasar spectra from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) for the rare occurrences where a strong damped Lyman-alpha absorber (DLA) blocks the Broad Line Region emission from the quasar and acts as a natural coronagraph to reveal narrow Lyalpha emission from the host galaxy. We define a statistical sample of 31 DLAs in Data Release 9 (DR9) with log N(HI) > 21.3 cm^-2 located at less than 1500 km s^-1 from the quasar redshift. In 25% (8) of these DLAs, a strong narrow Lyalpha emission line is observed with flux ~25 x 10^-17 erg s^-1 cm^-2 on average. For DLAs without this feature in their troughs, the average 3-sigma upper limit is < 0.8 x 10^-17 erg s^-1 cm^-2. Our statistical sample is nearly 2.5 times larger than the anticipated number of intervening DLAs in DR9 within 1500 km s^-1 of the quasar redshift. We also define a sample of 26 DLAs from DR9 and DR10 with narrow Lyalpha emission detected and no limit on the HI column density to better characterize properties of the host galaxy emission. Analyzing the statistical sample, we do not find substantial differences in the kinematics, metals, or reddening for the two populations with and without emission detected. The highly symmetric narrow Lyalpha emission line profile centered in the HI trough indicates that the emitting region is separate from the absorber. The luminosity of the narrow Lyalpha emission peaks is intermediate between that of Lyman-alpha emitters and radio galaxies, implying that the Lyalpha emission is predominantly due to ionizing radiation from the AGN. Galaxies neighboring the quasar host are likely responsible for the majority (> 75%) of these DLAs, with only a minority (< 25%) arising from HI clouds located in the AGN host galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا