Do you want to publish a course? Click here

An effective solution to convex $1$-body $N$-representability

338   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

From a geometric point of view, Paulis exclusion principle defines a hypersimplex. This convex polytope describes the compatibility of $1$-fermion and $N$-fermion density matrices, therefore it coincides with the convex hull of the pure $N$-representable $1$-fermion density matrices. Consequently, the description of ground state physics through $1$-fermion density matrices may not necessitate the intricate pure state generalized Pauli constraints. In this article, we study the generalization of the $1$-body $N$-representability problem to ensemble states with fixed spectrum $mathbf{w}$, in order to describe finite-temperature states and distinctive mixtures of excited states. By employing ideas from convex analysis and combinatorics, we present a comprehensive solution to the corresponding convex relaxation, thus circumventing the complexity of generalized Pauli constraints. In particular, we adapt and further develop tools such as symmetric polytopes, sweep polytopes, and Gale order. For both fermions and bosons, generalized exclusion principles are discovered, which we determine for any number of particles and dimension of the $1$-particle Hilbert space. These exclusion principles are expressed as linear inequalities satisfying hierarchies determined by the non-zero entries of $mathbf{w}$. The two families of polytopes resulting from these inequalities are part of the new class of so-called lineup polytopes.



rate research

Read More

90 - Y.-K. Liu , M. Christandl , 2006
We study the computational complexity of the N-representability problem in quantum chemistry. We show that this problem is QMA-complete, which is the quantum generalization of NP-complete. Our proof uses a simple mapping from spin systems to fermionic systems, as well as a convex optimization technique that reduces the problem of finding ground states to N-representability.
We analyze the set ${cal A}_N^Q$ of mixed unitary channels represented in the Weyl basis and accessible by a Lindblad semigroup acting on an $N$-level quantum system. General necessary and sufficient conditions for a mixed Weyl quantum channel of an arbitrary dimension to be accessible by a semigroup are established. The set ${cal A}_N^Q$ is shown to be log--convex and star-shaped with respect to the completely depolarizing channel. A decoherence supermap acting in the space of Lindblad operators transforms them into the space of Kolmogorov generators of classical semigroups. We show that for mixed Weyl channels the hyper-decoherence commutes with the dynamics, so that decohering a quantum accessible channel we obtain a bistochastic matrix form the set ${cal A}_N^C$ of classical maps accessible by a semigroup. Focusing on $3$-level systems we investigate the geometry of the sets of quantum accessible maps, its classical counterpart and the support of their spectra. We demonstrate that the set ${cal A}_3^Q$ is not included in the set ${cal U}^Q_3$ of quantum unistochastic channels, although an analogous relation holds for $N=2$. The set of transition matrices obtained by hyper-decoherence of unistochastic channels of order $Nge 3$ is shown to be larger than the set of unistochastic matrices of this order, and yields a motivation to introduce the larger sets of $k$-unistochastic matrices.
We provide evidence, based on direct simulation of the quantum Fisher information, that 1/N scaling of the sensitivity with the number of atoms N in an atomic magnetometer can be surpassed by double-passing a far-detuned laser through the atomic system during Larmor precession. Furthermore, we predict that for N>>1, the proposed double-pass atomic magnetometer can essentially achieve 1/N scaling without requiring any appreciable amount of entanglement.
138 - Cherif F. Matta , Lou Massa 2021
Consider a projector matrix P, representing the first order reduced density matrix in a basis of orthonormal atom-centric basis functions. A mathematical question arises, and that is, how to break P into its natural component kernel projector matrices, while preserving N-representability of P. The answer relies upon 2- projector triple products, PjPPj. The triple product solutions, applicable within the quantum crystallography of large molecules, are determined by a new form of the Clinton equations, which - in their original form - have long been used to ensure N-representability of density matrices consistent with X-ray diffraction scattering factors.
We present a quantum LDPC code family that has distance $Omega(N^{3/5}/operatorname{polylog}(N))$ and $tildeTheta(N^{3/5})$ logical qubits. This is the first quantum LDPC code construction which achieves distance greater than $N^{1/2} operatorname{polylog}(N)$. The construction is based on generalizing the homological product of codes to a fiber bundle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا