Do you want to publish a course? Click here

Enhancing quantum models of stochastic processes with error mitigation

73   0   0.0 ( 0 )
 Added by Matthew Ho
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Error mitigation has been one of the recently sought after methods to reduce the effects of noise when computation is performed on a noisy near-term quantum computer. Interest in simulating stochastic processes with quantum models gained popularity after being proven to require less memory than their classical counterparts. With previous work on quantum models focusing primarily on further compressing memory, this work branches out into the experimental scene; we aim to bridge the gap between theoretical quantum models and practical use with the inclusion of error mitigation methods. It is observed that error mitigation is successful in improving the resultant expectation values. While our results indicate that error mitigation work, we show that its methodology is ultimately constrained by hardware limitations in these quantum computers.



rate research

Read More

If NISQ-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasi-probability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the nature of the error model is fully understood and sufficiently local both spatially and temporally. Unfortunately these conditions are challenging to satisfy. Here we present a method by which the proper compensation strategy can instead be learned ab initio. Our training process uses multiple variants of the primary circuit where all non-Clifford gates are substituted with gates that are efficient to simulate classically. The process yields a configuration that is near-optimal versus noise in the real system with its non-Clifford gate set. Having presented a range of learning strategies, we demonstrate the power of the technique both with real quantum hardware (IBM devices) and exactly-emulated imperfect quantum computers. The systems suffer a range of noise severities and types, including spatially and temporally correlated variants. In all cases the protocol successfully adapts to the noise and mitigates it to a high degree.
We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault tolerant quantum error correcting circuit for a $d=3$ Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudo-threshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.
A general method to mitigate the effect of errors in quantum circuits is outlined. The method is developed in sight of characteristics that an ideal method should possess and to ameliorate an existing method which only mitigates state preparation and measurement errors. The method is tested on different IBM Q quantum devices, using randomly generated circuits with up to four qubits. A large majority of results show significant error mitigation.
Contemporary quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations, even with a large number of qubits. Quantum error correction is expected to eventually enable fault-tolerant quantum computation at large scales, but until then it will be necessary to use alternative strategies to mitigate the impact of errors. We propose a near-term friendly strategy to mitigate errors by entangling and measuring $M$ copies of a noisy state $rho$. This enables us to estimate expectation values with respect to a state with dramatically reduced error, $rho^M/ mathrm{Tr}(rho^M)$, without explicitly preparing it, hence the name virtual distillation. As $M$ increases, this state approaches the closest pure state to $rho$, exponentially quickly. We analyze the effectiveness of virtual distillation and find that it is governed in many regimes by the behavior of this pure state (corresponding to the dominant eigenvector of $rho$). We numerically demonstrate that virtual distillation is capable of suppressing errors by multiple orders of magnitude and explain how this effect is enhanced as the system size grows. Finally, we show that this technique can improve the convergence of randomized quantum algorithms, even in the absence of device noise.
123 - Zhenyu Cai 2021
Even with the recent rapid developments in quantum hardware, noise remains the biggest challenge for the practical applications of any near-term quantum devices. Full quantum error correction cannot be implemented in these devices due to their limited scale. Therefore instead of relying on engineered code symmetry, symmetry verification was developed which uses the inherent symmetry within the physical problem we try to solve. In this article, we develop a general framework named symmetry expansion which provides a wide spectrum of symmetry-based error mitigation schemes beyond symmetry verification, enabling us to achieve different balances between the estimation bias and the sampling cost of the scheme. We show that certain symmetry expansion schemes can achieve a smaller estimation bias than symmetry verification through cancellation between the biases due to the detectable and undetectable noise components. A practical way to search for such a small-bias scheme is introduced. By numerically simulating the Fermi-Hubbard model for energy estimation, the small-bias symmetry expansion we found can achieve an estimation bias 6 to 9 times below what is achievable by symmetry verification when the average number of circuit errors is between 1 to 2. The corresponding sampling cost for random shot noise reduction is just 2 to 6 times higher than symmetry verification. Beyond symmetries inherent to the physical problem, our formalism is also applicable to engineered symmetries. For example, the recent scheme for exponential error suppression using multiple noisy copies of the quantum device is just a special case of symmetry expansion using the permutation symmetry among the copies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا