Do you want to publish a course? Click here

On the nonclassicality in quantum JT gravity

97   0   0.0 ( 0 )
 Added by Dmitry Ageev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this note, we consider the question of classicality for the theory which is known to be the effective description of two-dimensional black holes - the Morse quantum mechanics. We calculate the Wigner function and the Fisher information characterizing classicality/quantumness of single-particle systems and briefly discuss further directions to study.



rate research

Read More

Recently, Saad, Shenker and Stanford showed how to define the genus expansion of Jackiw-Teitelboim quantum gravity in terms of a double-scaled Hermitian matrix model. However, the models non-perturbative sector has fatal instabilities at low energy that they cured by procedures that render the physics non-unique. This might not be a desirable property for a system that is supposed to capture key features of quantum black holes. Presented here is a model with identical perturbative physics at high energy that instead has a stable and unambiguous non-perturbative completion of the physics at low energy. An explicit examination of the full spectral density function shows how this is achieved. The new model, which is based on complex matrix models, also allows for the straightforward inclusion of spacetime features analogous to Ramond-Ramond fluxes. Intriguingly, there is a deformation parameter that connects this non-perturbative formulation of JT gravity to one which, at low energy, has features of a super JT gravity.
We continue the systematic study of the thermal partition function of Jackiw-Teitelboim (JT) gravity started in [arXiv:1911.01659]. We generalize our analysis to the case of multi-boundary correlators with the help of the boundary creation operator. We clarify how the Korteweg-de Vries constraints arise in the presence of multiple boundaries, deriving differential equations obeyed by the correlators. The differential equations allow us to compute the genus expansion of the correlators up to any order without ambiguity. We also formulate a systematic method of calculating the WKB expansion of the Baker-Akhiezer function and the t Hooft expansion of the multi-boundary correlators. This new formalism is much more efficient than our previous method based on the topological recursion. We further investigate the low temperature expansion of the two-boundary correlator. We formulate a method of computing it up to any order and also find a universal form of the two-boundary correlator in terms of the error function. Using this result we are able to write down the analytic form of the spectral form factor in JT gravity and show how the ramp and plateau behavior comes about. We also study the Hartle-Hawking state in the free boson/fermion representation of the tau-function and discuss how it should be related to the multi-boundary correlators.
For ensembles of Hamiltonians that fall under the Dyson classification of random matrices with $beta in {1,2,4}$, the low-temperature mean entropy can be shown to vanish as $langle S(T)ranglesim kappa T^{beta+1}$. A similar relation holds for Altland-Zirnbauer ensembles. JT gravity has been shown to be dual to the double-scaling limit of a $beta =2$ ensemble, with a classical eigenvalue density $propto e^{S_0}sqrt{E}$ when $0 < E ll 1$. We use universal results about the distribution of the smallest eigenvalues in such ensembles to calculate $kappa$ up to corrections that we argue are doubly exponentially small in $S_0$.
We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $mathcal{N} = 1$ supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ and review its applications to Liouville gravity. We then derive the corresponding matrix element for $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$ and apply it to explain structural features of $mathcal{N} = 1$ Liouville supergravity. We show that this matrix element has the following properties: (1) its $qto 1$ limit is the classical $text{OSp}^+(1|2, mathbb{R})$ Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $mathcal{N} = 1$ Liouville supergravity, and (3) it leads to $3j$-symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $mathcal{N} = 1$ Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ or the quantum supergroup $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$.
The quenched free energy, $F_Q(T){=}{-}Tlangle ln Z(T)rangle$, of various JT gravity and supergravity theories is explored, taking into account the key non-perturbative physics that is accessible using their matrix model formulations. The leading low energy physics of these systems can be modelled by the Airy and (a family of) Bessel models, which arise from scaling limits of matrix ensembles. The $F_Q(T)$s of these models are directly computed by explicit sampling of the matrix ensembles, and how their properties are connected to the statistical mechanics of the underlying discrete spectrum of the ensembles is elucidated. Some of the low temperature ($T$) features of the results confirm recent observations by Jassen and Mirbabayi. The results are then used as benchmarks for exploring an intriguing formula proposed by Okuyama for computing $F_Q(T)$ in terms of the connected correlators of its partition function, the wormholes of the gravity theory. A low $T$ truncation of the correlators helps render the formula practical, but it is shown that this is at the expense of much of its accuracy. The significance of the statistical interpretation of $F_Q(T)$ for black hole microphysics is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا