No Arabic abstract
We address the problem of sequentially selecting and observing processes from a given set to find the anomalies among them. The decision-maker observes one process at a time and obtains a noisy binary indicator of whether or not the corresponding process is anomalous. In this setting, we develop an anomaly detection algorithm that chooses the process to be observed at a given time instant, decides when to stop taking observations, and makes a decision regarding the anomalous processes. The objective of the detection algorithm is to arrive at a decision with an accuracy exceeding a desired value while minimizing the delay in decision making. Our algorithm relies on a Markov decision process defined using the marginal probability of each process being normal or anomalous, conditioned on the observations. We implement the detection algorithm using the deep actor-critic reinforcement learning framework. Unlike prior work on this topic that has exponential complexity in the number of processes, our algorithm has computational and memory requirements that are both polynomial in the number of processes. We demonstrate the efficacy of our algorithm using numerical experiments by comparing it with the state-of-the-art methods.
In this paper, we address the anomaly detection problem where the objective is to find the anomalous processes among a given set of processes. To this end, the decision-making agent probes a subset of processes at every time instant and obtains a potentially erroneous estimate of the binary variable which indicates whether or not the corresponding process is anomalous. The agent continues to probe the processes until it obtains a sufficient number of measurements to reliably identify the anomalous processes. In this context, we develop a sequential selection algorithm that decides which processes to be probed at every instant to detect the anomalies with an accuracy exceeding a desired value while minimizing the delay in making the decision and the total number of measurements taken. Our algorithm is based on active inference which is a general framework to make sequential decisions in order to maximize the notion of free energy. We define the free energy using the objectives of the selection policy and implement the active inference framework using a deep neural network approximation. Using numerical experiments, we compare our algorithm with the state-of-the-art method based on deep actor-critic reinforcement learning and demonstrate the superior performance of our algorithm.
We consider the problem of detecting anomalies among a given set of processes using their noisy binary sensor measurements. The noiseless sensor measurement corresponding to a normal process is 0, and the measurement is 1 if the process is anomalous. The decision-making algorithm is assumed to have no knowledge of the number of anomalous processes. The algorithm is allowed to choose a subset of the sensors at each time instant until the confidence level on the decision exceeds the desired value. Our objective is to design a sequential sensor selection policy that dynamically determines which processes to observe at each time and when to terminate the detection algorithm. The selection policy is designed such that the anomalous processes are detected with the desired confidence level while incurring minimum cost which comprises the delay in detection and the cost of sensing. We cast this problem as a sequential hypothesis testing problem within the framework of Markov decision processes, and solve it using the actor-critic deep reinforcement learning algorithm. This deep neural network-based algorithm offers a low complexity solution with good detection accuracy. We also study the effect of statistical dependence between the processes on the algorithm performance. Through numerical experiments, we show that our algorithm is able to adapt to any unknown statistical dependence pattern of the processes.
The monitoring and management of numerous and diverse time series data at Alibaba Group calls for an effective and scalable time series anomaly detection service. In this paper, we propose RobustTAD, a Robust Time series Anomaly Detection framework by integrating robust seasonal-trend decomposition and convolutional neural network for time series data. The seasonal-trend decomposition can effectively handle complicated patterns in time series, and meanwhile significantly simplifies the architecture of the neural network, which is an encoder-decoder architecture with skip connections. This architecture can effectively capture the multi-scale information from time series, which is very useful in anomaly detection. Due to the limited labeled data in time series anomaly detection, we systematically investigate data augmentation methods in both time and frequency domains. We also introduce label-based weight and value-based weight in the loss function by utilizing the unbalanced nature of the time series anomaly detection problem. Compared with the widely used forecasting-based anomaly detection algorithms, decomposition-based algorithms, traditional statistical algorithms, as well as recent neural network based algorithms, RobustTAD performs significantly better on public benchmark datasets. It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
Time-series anomaly detection is a popular topic in both academia and industrial fields. Many companies need to monitor thousands of temporal signals for their applications and services and require instant feedback and alerts for potential incidents in time. The task is challenging because of the complex characteristics of time-series, which are messy, stochastic, and often without proper labels. This prohibits training supervised models because of lack of labels and a single model hardly fits different time series. In this paper, we propose a solution to address these issues. We present an automated model selection framework to automatically find the most suitable detection model with proper parameters for the incoming data. The model selection layer is extensible as it can be updated without too much effort when a new detector is available to the service. Finally, we incorporate a customized tuning algorithm to flexibly filter anomalies to meet customers criteria. Experiments on real-world datasets show the effectiveness of our solution.
Incremental Expectation Maximization (EM) algorithms were introduced to design EM for the large scale learning framework by avoiding the full data set to be processed at each iteration. Nevertheless, these algorithms all assume that the conditional expectations of the sufficient statistics are explicit. In this paper, we propose a novel algorithm named Perturbed Prox-Preconditioned SPIDER (3P-SPIDER), which builds on the Stochastic Path Integral Differential EstimatoR EM (SPIDER-EM) algorithm. The 3P-SPIDER algorithm addresses many intractabilities of the E-step of EM; it also deals with non-smooth regularization and convex constraint set. Numerical experiments show that 3P-SPIDER outperforms other incremental EM methods and discuss the role of some design parameters.