No Arabic abstract
Motivated by recent transport experiments, we theoretically study the quantum Hall effect in topological semimetal films. Owing to the confinement effect, the bulk subbands originating from the chiral Landau levels establish energy gaps that have quantized Hall conductance and can be observed in relatively thick films. We find that the quantum Hall state is strongly anisotropic for different confinement directions not only due to the presence of the surface states but also because of the bulk chiral Landau levels. As a result, we re-examine the quantum Hall effect from the surface Fermi arcs and chiral modes in Weyl semimetals and give a more general view into this problem. Besides, we also find that when a topological Dirac semimetal is confined in its rotational symmetry axis, it hosts both quantum Hall and quantum spin Hall states, in which the helical edge states are protected by the conservation of the spin-$z$ component.
Recently, Weyl semimetals have been experimentally discovered in both inversion-symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena which have been extensively investigated by photoemission and transport measurements. Despite the numerous experimental efforts on Fermi arcs and chiral anomaly, the existence of unconventional zeroth Landau levels, as a unique hallmark of Weyl fermions which is highly related to chiral anomaly, remains elusive owing to the stringent experimental requirements. Here, we report the magneto-optical study of Landau quantization in Weyl semimetal NbAs. High magnetic fields drive the system towards the quantum limit which leads to the observation of zeroth chiral Landau levels in two inequivalent Weyl nodes. As compared to other Landau levels, the zeroth chiral Landau level exhibits a distinct linear dispersion in z momentum direction and allows the optical transitions without the limitation of zero z momentum or square root of magnetic field evolution. The magnetic field dependence of the zeroth Landau levels further verifies the predicted particle-hole asymmetry of the Weyl cones. Meanwhile, the optical transitions from the normal Landau levels exhibit the coexistence of multiple carriers including an unexpected massive Dirac fermion, pointing to a more complex topological nature in inversion-symmetry-breaking Weyl semimetals. Our results provide insights into the Landau quantization of Weyl fermions and demonstrate an effective tool for studying complex topological systems.
Geometric Berry phase can be induced either by spin-orbit coupling, giving rise to the anomalous Hall effect in ferromagnetic materials, or by chiral spin texture, such as skyrmions, leading to the topological Hall effect. Recent experiments have revealed that both phenomena can occur in topological insulator films with magnetic doping, thus providing us with an intriguing platform to study the interplay between these two phenomena. In this work, we numerically study the anomalous Hall and topological Hall effects in a four-band model that can properly describe the quantum well states in the magnetic topological insulator films by combining Landauer-Buttiker formula and the iterative Greens function method. Our numerical results suggest that spin-orbit coupling in this model plays a different role in the quantum transport in the clean and disordered limits. In the clean limit, spin-orbit coupling mainly influences the longitudinal transport but does not have much effect on topological Hall conductance. Such behavior is further studied through the analytical calculation of scattering cross-section due to skyrmion within the four-band model. In the disordered limit, the longitudinal transport is determined by disorder scattering and spin-orbit coupling is found to affect strongly the topological Hall conductance. This sharp contrast unveils a dramatic interplay between spin-orbit coupling and disorder effect in topological Hall effect in magnetic topological insulator systems.
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an ordinary superconductor. To this end, we consider a microscopic model for a topologically trivial two-dimensional p-wave superconductor exposed to a magnetic field, and find that the interplay of superconductivity and Landau level physics yields a rich phase diagram of states as a function of $mu/t$ and $Delta/t$, where $mu$, $t$ and $Delta$ are the chemical potential, hopping strength, and the amplitude of the superconducting gap. In addition to quantum Hall states and topologically trivial p-wave superconductor, the phase diagram also accommodates regions of topological superconductivity. Most importantly, we find that application of a non-uniform, periodic magnetic field produced by a square or a hexagonal lattice of $h/e$ fluxoids greatly facilitates regions of topological superconductivity in the limit of $Delta/trightarrow 0$. In contrast, a uniform magnetic field, a hexagonal Abrikosov lattice of $h/2e$ fluxoids, or a one dimensional lattice of stripes produces topological superconductivity only for sufficiently large $Delta/t$.
Two recent experiments successfully observed Landau levels in the tunneling spectra of the topological insulator Bi2Se3. To mimic the influence of a scanning tunneling microscope tip on the Landau levels we solve the two-dimensional Dirac equation in the presence of a localized electrostatic potential. We find that the STM tip not only shifts the Landau levels, but also suppresses for a realistic choice of parameters the negative branch of Landau levels.
We show that a thin film of a three-dimensional topological insulator (3DTI) with an exchange field is a realization of the famous Haldane model for quantum Hall effect (QHE) without Landau levels. The exchange field plays the role of staggered fluxes on the honeycomb lattice, and the hybridization gap of the surface states is equivalent to alternating on-site energies on the AB sublattices. A peculiar phase diagram for the QHE is predicted in 3DTI thin films under an applied magnetic field, which is quite different from that either in traditional QHE systems or in graphene.