Do you want to publish a course? Click here

Value-at-Risk Optimization with Gaussian Processes

72   0   0.0 ( 0 )
 Added by Quoc Phong Nguyen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Value-at-risk (VaR) is an established measure to assess risks in critical real-world applications with random environmental factors. This paper presents a novel VaR upper confidence bound (V-UCB) algorithm for maximizing the VaR of a black-box objective function with the first no-regret guarantee. To realize this, we first derive a confidence bound of VaR and then prove the existence of values of the environmental random variable (to be selected to achieve no regret) such that the confidence bound of VaR lies within that of the objective function evaluated at such values. Our V-UCB algorithm empirically demonstrates state-of-the-art performance in optimizing synthetic benchmark functions, a portfolio optimization problem, and a simulated robot task.



rate research

Read More

How can we efficiently gather information to optimize an unknown function, when presented with multiple, mutually dependent information sources with different costs? For example, when optimizing a robotic system, intelligently trading off computer simulations and real robot testings can lead to significant savings. Existing methods, such as multi-fidelity GP-UCB or Entropy Search-based approaches, either make simplistic assumptions on the interaction among different fidelities or use simple heuristics that lack theoretical guarantees. In this paper, we study multi-fidelity Bayesian optimization with complex structural dependencies among multiple outputs, and propose MF-MI-Greedy, a principled algorithmic framework for addressing this problem. In particular, we model different fidelities using additive Gaussian processes based on shared latent structures with the target function. Then we use cost-sensitive mutual information gain for efficient Bayesian global optimization. We propose a simple notion of regret which incorporates the cost of different fidelities, and prove that MF-MI-Greedy achieves low regret. We demonstrate the strong empirical performance of our algorithm on both synthetic and real-world datasets.
Conditional Value at Risk (CVaR) is a family of coherent risk measures which generalize the traditional mathematical expectation. Widely used in mathematical finance, it is garnering increasing interest in machine learning, e.g., as an alternate approach to regularization, and as a means for ensuring fairness. This paper presents a generalization bound for learning algorithms that minimize the CVaR of the empirical loss. The bound is of PAC-Bayesian type and is guaranteed to be small when the empirical CVaR is small. We achieve this by reducing the problem of estimating CVaR to that of merely estimating an expectation. This then enables us, as a by-product, to obtain concentration inequalities for CVaR even when the random variable in question is unbounded.
Refining low-resolution (LR) spatial fields with high-resolution (HR) information is challenging as the diversity of spatial datasets often prevents direct matching of observations. Yet, when LR samples are modeled as aggregate conditional means of HR samples with respect to a mediating variable that is globally observed, the recovery of the underlying fine-grained field can be framed as taking an inverse of the conditional expectation, namely a deconditioning problem. In this work, we introduce conditional mean processes (CMP), a new class of Gaussian Processes describing conditional means. By treating CMPs as inter-domain features of the underlying field, a posterior for the latent field can be established as a solution to the deconditioning problem. Furthermore, we show that this solution can be viewed as a two-staged vector-valued kernel ridge regressor and show that it has a minimax optimal convergence rate under mild assumptions. Lastly, we demonstrate its proficiency in a synthetic and a real-world atmospheric field downscaling problem, showing substantial improvements over existing methods.
A new risk measure, the lambda value at risk (Lambda VaR), has been recently proposed from a theoretical point of view as a generalization of the value at risk (VaR). The Lambda VaR appears attractive for its potential ability to solve several problems of the VaR. In this paper we propose three nonparametric backtesting methodologies for the Lambda VaR which exploit different features. Two of these tests directly assess the correctness of the level of coverage predicted by the model. One of these tests is bilateral and provides an asymptotic result. A third test assess the accuracy of the Lambda VaR that depends on the choice of the P&L distribution. However, this test requires the storage of more information. Finally, we perform a backtesting exercise and we compare our results with the ones from Hitaj and Peri (2015)
In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviations from the expected behavior may have detrimental effects, and conventional MDP algorithms usually ignore this aspect. We provide conditions for the structure of the underlying MDP ensuring that approximations for the exact problem can be derived and solved efficiently. Our findings are novel inasmuch as average value at risk has not previously been considered in association with the total cost criterion. Our method is demonstrated in a rapid deployment scenario, whereby a robot is tasked with the objective of reaching a target location within a temporal deadline where increased speed is associated with increased probability of failure. We demonstrate that the proposed algorithm not only produces a risk averse policy reducing the probability of exceeding the expected temporal deadline, but also provides the statistical distribution of costs, thus offering a valuable analysis tool.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا