In this work we investigate whether the Kitaev honeycomb model can serve as a starting point to realize the intriguing physics of the Sachdev-Ye-Kitaev model. The starting point is to strain the system which leads to flat bands reminiscent of Landau levels, thereby quenching the kinetic energy. The presence of weak residual perturbations, such as Heisenberg interactions and the $gamma$-term, creates effective interactions between the Majorana modes when projected into the flux-free sector. Taking into account a disordered boundary results in an interaction that is effectively random. While we find that in a strained nearest-neighbor Kitaev honeycomb model it is unlikely to find the Sachdev-Ye-Kitaev model, it appears possible to realize a bipartite variant with similar properties. We furthermore argue that next-nearest-neighbor terms can lead to actual Sachdev-Ye-Kitaev physics, if large enough.