Do you want to publish a course? Click here

Long-Range Ising Models: Contours, Phase Transitions and Decaying Fields

94   0   0.0 ( 0 )
 Added by Lucas Affonso
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by Fr{o}hlich-Spencer and subsequent authors who introduced the notion of contour for long-range systems, we provide a definition of contour and a direct proof for the phase transition for ferromagnetic long-range Ising models on $mathbb{Z}^d$, $dgeq 2$. The argument, which is based on a multi-scale analysis, works for the sharp region $alpha>d$ and improves previous results obtained by Park for $alpha>3d+1$, and by Ginibre, Grossmann, and Ruelle for $alpha> d+1$, where $alpha$ is the power of the coupling constant. The key idea is to avoid a large number of small contours. As an application, we prove the persistence of the phase transition when we add a polynomial decaying magnetic field with power $delta>0$ as $h^*|x|^{-delta}$, where $h^* >0$. For $d<alpha<d+1$, the phase transition occurs when $delta>d-alpha$, and when $h^*$ is small enough over the critical line $delta=d-alpha$. For $alpha geq d+1$, $delta>1$ it is enough to prove the phase transition, and for $delta=1$ we have to ask $h^*$ small. The natural conjecture is that this region is also sharp for the phase transition problem when we have a decaying field.



rate research

Read More

We consider ferromagnetic long-range Ising models which display phase transitions. They are long-range one-dimensional Ising ferromagnets, in which the interaction is given by $J_{x,y} = J(|x-y|)equiv frac{1}{|x-y|^{2-alpha}}$ with $alpha in [0, 1)$, in particular, $J(1)=1$. For this class of models one way in which one can prove the phase transition is via a kind of Peierls contour argument, using the adaptation of the Frohlich-Spencer contours for $alpha eq 0$, proposed by Cassandro, Ferrari, Merola and Presutti. As proved by Frohlich and Spencer for $alpha=0$ and conjectured by Cassandro et al for the region they could treat, $alpha in (0,alpha_{+})$ for $alpha_+=log(3)/log(2)-1$, although in the literature dealing with contour methods for these models it is generally assumed that $J(1)gg1$, we can show that this condition can be removed in the contour analysis. In addition, combining our theorem with a recent result of Littin and Picco we prove the persistence of the contour proof of the phase transition for any $alpha in [0,1)$. Moreover, we show that when we add a magnetic field decaying to zero, given by $h_x= h_*cdot(1+|x|)^{-gamma}$ and $gamma >max{1-alpha, 1-alpha^* }$ where $alpha^*approx 0.2714$, the transition still persists.
In this paper, we investigate the behaviour of statistical physics models on a book with pages that are isomorphic to half-planes. We show that even for models undergoing a continuous phase transition on $mathbb Z^2$, the phase transition becomes discontinuous as soon as the number of pages is sufficiently large. In particular, we prove that the Ising model on a three pages book has a discontinuous phase transition (if one allows oneself to consider large coupling constants along the line on which pages are glued). Our work confirms predictions in theoretical physics which relied on renormalization group, conformal field theory and numerics ([Car91,ITB91,SMP10]) some of which were motivated by the analysis of the Renyi entropy of certain quantum spin systems.
In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body physics, out-of-equilibrium extensions of such concepts still leave much to be desired. Using exact diagonalization and the time-dependent variational principle in uniform martrix product states, we calculate the time evolution of the local order parameter and Loschmidt return rate in transverse-field Ising chains with antiferromagnetic power law-decaying interactions, and map out the corresponding rich dynamical phase diagram. textit{Anomalous} cusps in the return rate, which are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions, are absent within the accessible timescales of our simulations. We attribute this to much weaker domain-wall binding in the antiferromagnetic case. For quenches across the quantum critical point, textit{regular} cusps appear in the return rate and connect to the local order parameter changing sign, indicating the concurrence of two major concepts of dynamical phase transitions. Our results consolidate conclusions of previous works that a necessary condition for the appearance of anomalous cusps in the return rate after quenches within the ordered phase is for topologically trivial local spin flips to be the energetically dominant excitations in the spectrum of the quench Hamiltonian. Our findings are readily accessible in modern trapped-ion setups, and we outline the associated experimental considerations.
We analyze the quantum phases, correlation functions and edge modes for a class of spin-1/2 and fermionic models related to the 1D Ising chain in the presence of a transverse field. These models are the Ising chain with anti-ferromagnetic long-range interactions that decay with distance $r$ as $1/r^alpha$, as well as a related class of fermionic Hamiltonians that generalise the Kitaev chain, where both the hopping and pairing terms are long-range and their relative strength can be varied. For these models, we provide the phase diagram for all exponents $alpha$, based on an analysis of the entanglement entropy, the decay of correlation functions, and the edge modes in the case of open chains. We demonstrate that violations of the area law can occur for $alpha lesssim1$, while connected correlation functions can decay with a hybrid exponential and power-law behaviour, with a power that is $alpha$-dependent. Interestingly, for the fermionic models we provide an exact analytical derivation for the decay of the correlation functions at every $alpha$. Along the critical lines, for all models breaking of conformal symmetry is argued at low enough $alpha$. For the fermionic models we show that the edge modes, massless for $alpha gtrsim 1$, can acquire a mass for $alpha < 1$. The mass of these modes can be tuned by varying the relative strength of the kinetic and pairing terms in the Hamiltonian. Interestingly, for the Ising chain a similar edge localization appears for the first and second excited states on the paramagnetic side of the phase diagram, where edge modes are not expected. We argue that, at least for the fermionic chains, these massive states correspond to the appearance of new phases, notably approached via quantum phase transitions without mass gap closure. Finally, we discuss the possibility to detect some of these effects in experiments with cold trapped ions.
97 - Vieri Mastropietro 2020
In planar lattice statistical mechanics models like coupled Ising with quartic interactions, vertex and dimer models, the exponents depend on all the Hamiltonian details. This corresponds, in the Renormalization Group language, to a line of fixed points. A form of universality is expected to hold, implying that all the exponents can be expressed by exact Kadanoff relations in terms of a single one of them. This conjecture has been recently established and we review here the key step of the proof, obtained by rigorous Renormalization Group methods and valid irrespectively on the solvability of the model. The exponents are expressed by convergent series in the coupling and, thanks to a set of cancellations due to emerging chiral symmetries, the extended scaling relations are proven to be true.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا