Do you want to publish a course? Click here

Principled Exploration via Optimistic Bootstrapping and Backward Induction

368   0   0.0 ( 0 )
 Added by Chenjia Bai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

One principled approach for provably efficient exploration is incorporating the upper confidence bound (UCB) into the value function as a bonus. However, UCB is specified to deal with linear and tabular settings and is incompatible with Deep Reinforcement Learning (DRL). In this paper, we propose a principled exploration method for DRL through Optimistic Bootstrapping and Backward Induction (OB2I). OB2I constructs a general-purpose UCB-bonus through non-parametric bootstrap in DRL. The UCB-bonus estimates the epistemic uncertainty of state-action pairs for optimistic exploration. We build theoretical connections between the proposed UCB-bonus and the LSVI-UCB in a linear setting. We propagate future uncertainty in a time-consistent manner through episodic backward update, which exploits the theoretical advantage and empirically improves the sample-efficiency. Our experiments in the MNIST maze and Atari suite suggest that OB2I outperforms several state-of-the-art exploration approaches.

rate research

Read More

104 - Ivo Danihelka 2009
Many reinforcement learning exploration techniques are overly optimistic and try to explore every state. Such exploration is impossible in environments with the unlimited number of states. I propose to use simulated exploration with an optimistic model to discover promising paths for real exploration. This reduces the needs for the real exploration.
Actor-critic methods, a type of model-free Reinforcement Learning, have been successfully applied to challenging tasks in continuous control, often achieving state-of-the art performance. However, wide-scale adoption of these methods in real-world domains is made difficult by their poor sample efficiency. We address this problem both theoretically and empirically. On the theoretical side, we identify two phenomena preventing efficient exploration in existing state-of-the-art algorithms such as Soft Actor Critic. First, combining a greedy actor update with a pessimistic estimate of the critic leads to the avoidance of actions that the agent does not know about, a phenomenon we call pessimistic underexploration. Second, current algorithms are directionally uninformed, sampling actions with equal probability in opposite directions from the current mean. This is wasteful, since we typically need actions taken along certain directions much more than others. To address both of these phenomena, we introduce a new algorithm, Optimistic Actor Critic, which approximates a lower and upper confidence bound on the state-action value function. This allows us to apply the principle of optimism in the face of uncertainty to perform directed exploration using the upper bound while still using the lower bound to avoid overestimation. We evaluate OAC in several challenging continuous control tasks, achieving state-of the art sample efficiency.
We propose a bandit algorithm that explores by randomizing its history of rewards. Specifically, it pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. We design the pseudo rewards such that the bootstrap mean is optimistic with a sufficiently high probability. We call our algorithm Giro, which stands for garbage in, reward out. We analyze Giro in a Bernoulli bandit and derive a $O(K Delta^{-1} log n)$ bound on its $n$-round regret, where $Delta$ is the difference in the expected rewards of the optimal and the best suboptimal arms, and $K$ is the number of arms. The main advantage of our exploration design is that it easily generalizes to structured problems. To show this, we propose contextual Giro with an arbitrary reward generalization model. We evaluate Giro and its contextual variant on multiple synthetic and real-world problems, and observe that it performs well.
Graph neural networks~(GNNs) apply deep learning techniques to graph-structured data and have achieved promising performance in graph representation learning. However, existing GNNs rely heavily on enough labels or well-designed negative samples. To address these issues, we propose a new self-supervised graph representation method: deep graph bootstrapping~(DGB). DGB consists of two neural networks: online and target networks, and the input of them are different augmented views of the initial graph. The online network is trained to predict the target network while the target network is updated with a slow-moving average of the online network, which means the online and target networks can learn from each other. As a result, the proposed DGB can learn graph representation without negative examples in an unsupervised manner. In addition, we summarize three kinds of augmentation methods for graph-structured data and apply them to the DGB. Experiments on the benchmark datasets show the DGB performs better than the current state-of-the-art methods and how the augmentation methods affect the performances.
We discuss the relative merits of optimistic and randomized approaches to exploration in reinforcement learning. Optimistic approaches presented in the literature apply an optimistic boost to the value estimate at each state-action pair and select actions that are greedy with respect to the resulting optimistic value function. Randomized approaches sample from among statistically plausible value functions and select actions that are greedy with respect to the random sample. Prior computational experience suggests that randomized approaches can lead to far more statistically efficient learning. We present two simple analytic examples that elucidate why this is the case. In principle, there should be optimistic approaches that fare well relative to randomized approaches, but that would require intractable computation. Optimistic approaches that have been proposed in the literature sacrifice statistical efficiency for the sake of computational efficiency. Randomized approaches, on the other hand, may enable simultaneous statistical and computational efficiency.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا