Do you want to publish a course? Click here

Evaluating Rotation Periods of M Dwarfs Across the Ages

104   0   0.0 ( 0 )
 Added by Mark Popinchalk
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we examine M dwarf rotation rates at a range of ages to establish benchmarks for Mdwarf gyrochronology. This work includes a sample of 713 spectroscopically-classified M0-M8 dwarfs with new rotation rates measured from K2 light curves. We analyzed data and recover rotation rates for 179 of these objects. We add these to rotation rates for members of clusters with known ages (5-700 Myr), as well as objects assumed to have field ages ($>$1 Gyr). We use Gaia DR2 parallax and (G-GRP) photometry to create color-magnitude diagrams to compare objects across samples. We use color-period plots to analyze the period distributions across age, as well as incorporate Halpha equivalent width and tangential velocity where possible to further comment on age dependence. We find that the age of transition from rapid to slow rotation in clusters, which we define as an elbow in the period-color plots, depends on spectral type. Later spectral types transition at older ages: M4 for Praesepe at 700 Myr, one of the oldest clusters for which M dwarf rotation rates have been measured. The transition from active to inactive Halpha equivalent width also occurs at this elbow, as objects transition from rapid rotation to the slowly rotating sequence. Redder or smaller stars remain active at older ages. Finally, using Gaia kinematics we find evidence for rotation stalling for late Ms in the field sample, suggesting the transition happens much later for mid to late-type M dwarfs.

rate research

Read More

We present rotation period measurements for 107 M dwarfs in the mass range $0.15-0.70 M_odot$ observed within the context of the APACHE photometric survey. We measure rotation periods in the range 0.5-190 days, with the distribution peaking at $sim$ 30 days. We revise the stellar masses and radii for our sample of rotators by exploiting the Gaia DR2 data. For $sim 20%$ of the sample, we compare the photometric rotation periods with those derived from different spectroscopic indicators, finding good correspondence in most cases. We compare our rotation periods distribution to the one obtained by the Kepler survey in the same mass range, and to that derived by the MEarth survey for stars in the mass range $0.07-0.25 M_odot$. The APACHE and Kepler periods distributions are in good agreement, confirming the reliability of our results, while the APACHE distribution is consistent with the MEarth result only for the older/slow rotators, and in the overlapping mass range of the two surveys. Combining the APACHE/Kepler distribution with the MEarth distribution, we highlight that the rotation period increases with decreasing stellar mass, in agreement with previous work. Our findings also suggest that the spin-down time scale, from fast to slow rotators, changes crossing the fully convective limit at $approx0.3 M_odot$ for M dwarfs. The catalogue of 107 rotating M dwarfs presented here is particularly timely, as the stars are prime targets for the potential identification of transiting small planets with TESS and amenable to high-precision mass determination and further atmospheric characterization measurements.
Aims. The main goal of this work is to measure rotation periods of the M-type dwarf stars being observed by the CARMENES exoplanet survey to help distinguish radial-velocity signals produced by magnetic activity from those produced by exoplanets. Rotation periods are also fundamental for a detailed study of the relation between activity and rotation in late-type stars. Methods. We look for significant periodic signals in 622 photometric time series of 337 bright, nearby M dwarfs obtained by long-time baseline, automated surveys (MEarth, ASAS, SuperWASP, NSVS, Catalina, ASAS-SN, K2, and HATNet) and for 20 stars which we obtained with four 0.2-0.8 m telescopes at high geographical latitudes. Results. We present 142 rotation periods (73 new) from 0.12 d to 133 d and ten long-term activity cycles (six new) from 3.0 a to 11.5 a. We compare our determinations with those in the existing literature; we investigate the distribution of P rot in the CARMENES input catalogue,the amplitude of photometric variability, and their relation to vsin i and pEW(Halfa); and we identify three very active stars with new rotation periods between 0.34 d and 23.6 d.
We report rotation periods, variability characteristics, gyrochronological ages for ~950 of the Kepler Object of Interest host stars. We find a wide dispersion in the amplitude of the photometric variability as a function of rotation, likely indicating differences in the spot distribution among stars. We use these rotation periods in combination with published spectroscopic measurements of vsini and stellar parameters to derive the stellar inclination in the line-of-sight, and find a number of systems with possible spin-orbit misalignment. We additionally find several systems with close-in planet candidates whose stellar rotation periods are equal to or twice the planetary orbital period, indicative of possible tidal interactions between these planets and their parent stars. If these systems survive validation to become confirmed planets, they will provide important clues to the evolutionary history of these systems.
We measure rotation periods and sinusoidal amplitudes in Evryscope light curves for 122 two-minute K5-M4 TESS targets selected for strong flaring. The Evryscope array of telescopes has observed all bright nearby stars in the South, producing two-minute cadence light curves since 2016. Long-term, high-cadence observations of rotating flare stars probe the complex relationship between stellar rotation, starspots, and superflares. We detect periods from 0.3487 to 104 d, and observe amplitudes from 0.008 to 0.216 g mag. We find the Evryscope amplitudes are larger than those in TESS with the effect correlated to stellar mass (p-value=0.01). We compute the Rossby number (Ro), and find our sample selected for flaring has twice as many intermediate rotators (0.04<Ro<0.4) as fast (Ro<0.04) or slow (Ro>0.44) rotators; this may be astrophysical or a result of period-detection sensitivity. We discover 30 fast, 59 intermediate, and 33 slow rotators. We measure a median starspot coverage of 13% of the stellar hemisphere and constrain the minimum magnetic field strength consistent with our flare energies and spot coverage to be 500 G, with later-type stars exhibiting lower values than earlier-types. We observe a possible change in superflare rates at intermediate periods. However, we do not conclusively confirm the increased activity of intermediate rotators seen in previous studies. We split all rotators at Ro~0.2 into Prot<10 d and Prot>10 d bins to confirm short-period rotators exhibit higher superflare rates, larger flare energies, and higher starspot coverage than do long-period rotators, at p-values of 3.2 X 10^-5, 1.0 X 10^-5, and 0.01, respectively.
We present a study of flare rates, rotation periods, and spectroscopic activity indicators of 125 single stars within 15 parsecs and with masses between 0.1$-$0.3 $M_odot$ observed during the first year of the TESS mission, with the goal of elucidating the relationship between these various magnetically connected phenomena. We gathered multi-epoch high resolution spectra of each target and we measured equivalent widths of the activity indicators Helium I D$_3$, $Halpha$, and the Calcium infrared triplet line at 8542.09 angstroms. We present 18 new rotation periods from MEarth photometry and 19 new rotation periods from TESS photometry. We present a catalog of 1392 flares. After correcting for sensitivity, we find the slope of the flare frequency distribution for all stars to have a standard value of $alpha$ = 1.98 $pm$ 0.02. We determine R$_{31.5}$, the rate of flares per day with energies above E = 3.16$times$10$^{31}$ ergs in the TESS bandpass. We find that below a critical value of $Halpha$ EW = -0.71 angstroms, log R$_{31.5}$ increases linearly with increasing $Halpha$ emission; above this value, log R$_{31.5}$ declines rapidly. The stars divide into two groups: 26% have $Halpha$ in emission, high flare rates with typical values of log R$_{31.5}$ = -1.30 $pm$ 0.08, and have Rossby numbers $<$ 0.50. The remaining 74% show little to no $Halpha$ in emission and exhibit log R$_{31.5}$ $<$ -3.86, with the majority of these stars not showing a single flare during the TESS observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا