Minimal two-body quantum absorption refrigerator


Abstract in English

We study the phenomenon of absorption refrigeration, where refrigeration is achieved by heating instead of work, in two different setups: a minimal set up based on coupled qubits, and two non-linearly coupled resonators. Considering ZZ interaction between the two qubits, we outline the basic ingredients required to achieve cooling. Using local as well as global master equations, we observe that inclusion of XX type term in the qubit-qubit coupling is detrimental to cooling. We compare the cooling effect obtained in the qubit case with that of non-linearly coupled resonators (multi-level system) where the ZZ interaction translates to a Kerr-type non-linearity. For small to intermediate strengths of non-linearity, we observe that multi-level quantum systems, for example qutrits, give better cooling effect compared to the qubits. Using Keldysh non-equilibrium Greens function formalism, we go beyond first order sequential tunneling processes and study the effect of higher order processes on refrigeration. We find reduced cooling effect compared to the master equation calculations.

Download