No Arabic abstract
Drug repurposing can accelerate the identification of effective compounds for clinical use against SARS-CoV-2, with the advantage of pre-existing clinical safety data and an established supply chain. RNA viruses such as SARS-CoV-2 manipulate cellular pathways and induce reorganization of subcellular structures to support their life cycle. These morphological changes can be quantified using bioimaging techniques. In this work, we developed DEEMD: a computational pipeline using deep neural network models within a multiple instance learning (MIL) framework, to identify putative treatments effective against SARS-CoV-2 based on morphological analysis of the publicly available RxRx19a dataset. This dataset consists of fluorescence microscopy images of SARS-CoV-2 non-infected cells and infected cells, with and without drug treatment. DEEMD first extracts discriminative morphological features to generate cell morphological profiles from the non-infected and infected cells. These morphological profiles are then used in a statistical model to estimate the applied treatment efficacy on infected cells based on similarities to non-infected cells. DEEMD is capable of localizing infected cells via weak supervision without any expensive pixel-level annotations. DEEMD identifies known SARS-CoV-2 inhibitors, such as Remdesivir and Aloxistatin, supporting the validity of our approach. DEEMD is scalable to process and screen thousands of treatments in parallel and can be explored for other emerging viruses and datasets to rapidly identify candidate antiviral treatments in the future.
A number of epidemics, including the SARS-CoV-1 epidemic of 2002-2004, have been known to exhibit superspreading, in which a small fraction of infected individuals is responsible for the majority of new infections. The existence of superspreading implies a fat-tailed distribution of infectiousness (new secondary infections caused per day) among different individuals. Here, we present a simple method to estimate the variation in infectiousness by examining the variation in early-time growth rates of new cases among different subpopulations. We use this method to estimate the mean and variance in the infectiousness, $beta$, for SARS-CoV-2 transmission during the early stages of the pandemic within the United States. We find that $sigma_beta/mu_beta gtrsim 3.2$, where $mu_beta$ is the mean infectiousness and $sigma_beta$ its standard deviation, which implies pervasive superspreading. This result allows us to estimate that in the early stages of the pandemic in the USA, over 81% of new cases were a result of the top 10% of most infectious individuals.
In this study, we investigated the inhibition of SARS-CoV-2 spike glycoprotein with HIV drugs and their combinations. This glycoprotein is essential for the reproduction of the SARS-COV-2 virus, so its inhibition opens new avenues for the treatment of patients with COVID-19 disease. In doing so, we used the VINI in silico model of cancer, whose high accuracy in finding effective drugs and their combinations was confirmed in vitro by comparison with existing results from NCI-60 bases, and in vivo by comparison with existing clinical trial results. In the first step, the VINI model calculated the inhibition efficiency of SARS-CoV-2 spike glycoprotein with 44 FDA-approved antiviral drugs. Of these drugs, HIV drugs have been shown to be effective, while others mainly have shown weak or no efficiency. Subsequently, the VINI model calculated the inhibition efficiency of all possible double and triple HIV drug combinations, and among them identified ten with the highest inhibition efficiency. These ten combinations were analyzed by Medscape drug-drug interaction software and LexiComp Drug Interactions. All combinations except the combination of cobicistat_abacavir_rilpivirine appear to have serious interactions (risk rating category D) when dosage adjustments/reductions are required for possible toxicity. Finally, the VINI model compared the inhibition efficiency of cobicistat_abacivir_rilpivirine combination with cocktails and individual drugs already used or planned to be tested against SARS-CoV-2. Combination cobicistat_abacivir_rilpivirine demonstrated the highest inhibition of SARS-CoV-2 spike glycoprotein over others. Thus, this combination seems to be a promising candidate for the further in vitro testing and clinical trials.
By combining various cancer cell line (CCL) drug screening panels, the size of the data has grown significantly to begin understanding how advances in deep learning can advance drug response predictions. In this paper we train >35,000 neural network models, sweeping over common featurization techniques. We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features. We found the inclusion of single nucleotide polymorphisms (SNPs) coded as count matrices improved model performance significantly, and no substantial difference in model performance with respect to molecular featurization between the common open source MOrdred descriptors and Dragon7 descriptors. Alongside this analysis, we outline data integration between CCL screening datasets and present evidence that new metrics and imbalanced data techniques, as well as advances in data standardization, need to be developed.
Early diagnosis of lung cancer is a key intervention for the treatment of lung cancer computer aided diagnosis (CAD) can play a crucial role. However, most published CAD methods treat lung cancer diagnosis as a lung nodule classification problem, which does not reflect clinical practice, where clinicians diagnose a patient based on a set of images of nodules, instead of one specific nodule. Besides, the low interpretability of the output provided by these methods presents an important barrier for their adoption. In this article, we treat lung cancer diagnosis as a multiple instance learning (MIL) problem in order to better reflect the diagnosis process in the clinical setting and for the higher interpretability of the output. We chose radiomics as the source of input features and deep attention-based MIL as the classification algorithm.The attention mechanism provides higher interpretability by estimating the importance of each instance in the set for the final diagnosis.In order to improve the models performance in a small imbalanced dataset, we introduce a new bag simulation method for MIL.The results show that our method can achieve a mean accuracy of 0.807 with a standard error of the mean (SEM) of 0.069, a recall of 0.870 (SEM 0.061), a positive predictive value of 0.928 (SEM 0.078), a negative predictive value of 0.591 (SEM 0.155) and an area under the curve (AUC) of 0.842 (SEM 0.074), outperforming other MIL methods.Additional experiments show that the proposed oversampling strategy significantly improves the models performance. In addition, our experiments show that our method provides an indication of the importance of each nodule in determining the diagnosis, which combined with the well-defined radiomic features, make the results more interpretable and acceptable for doctors and patients.
The novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digital infection rates and thousands death tolls daily. Enormeous effords are undertaken to achieve high coverage of immunization in order to reach herd immunity to stop spreading of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines, based either on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, recently increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported in particular in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. While statistical prevalence of these side effects seem to correlate with this particular vaccine type, i.e. adenonoviral vector based vaccines, the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia and other related side effects are correlated to an interplay of the two components in the vaccine, i.e. the spike antigen and the adenoviral vector, with the innate and immune system which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.