Do you want to publish a course? Click here

Optimization of the lowest eigenvalue for the Schrodinger operator with a $delta$-potential supported on a hyperplane

131   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the self-adjoint Schrodinger operator in $L^2(mathbb{R}^d)$, $dgeq 2$, with a $delta$-potential supported on a hyperplane $Sigmasubseteqmathbb{R}^d$ of strength $alpha=alpha_0+alpha_1$, where $alpha_0inmathbb{R}$ is a constant and $alpha_1in L^p(Sigma)$ is a nonnegative function. As the main result, we prove that the lowest spectral point of this operator is not smaller than that of the same operator with potential strength $alpha_0+alpha_1^*$, where $alpha_1^*$ is the symmetric decreasing rearrangement of $alpha_1$. The proof relies on the Birman-Schwinger principle and the reduction to an analogue of the P{o}lya-SzegH{o} inequality for the relativistic kinetic energy in $mathbb{R}^{d-1}$.



rate research

Read More

We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant field.
In this note the two dimensional Dirac operator $A_eta$ with an electrostatic $delta$-shell interaction of strength $etainmathbb R$ supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths $eta=pm 2$ the continuous spectrum of $A_eta$ inside the spectral gap of the free Dirac operator $A_0$ collapses abruptly to a single point.
472 - Pablo Miranda 2015
We consider the discrete spectrum of the two-dimensional Hamiltonian $H=H_0+V$, where $H_0$ is a Schrodinger operator with a non-constant magnetic field $B$ that depends only on one of the spatial variables, and $V$ is an electric potential that decays at infinity. We study the accumulation rate of the eigenvalues of H in the gaps of its essential spectrum. First, under some general conditions on $B$ and $V$, we introduce effective Hamiltonians that govern the main asymptotic term of the eigenvalue counting function. Further, we use the effective Hamiltonians to find the asymptotic behavior of the eigenvalues in the case where the potential V is a power-like decaying function and in the case where it is a compactly supported function, showing a semiclassical behavior of the eigenvalues in the first case and a non-semiclassical behavior in the second one. We also provide a criterion for the finiteness of the number of eigenvalues in the gaps of the essential spectrum of $H$
88 - Markus Holzmann 2020
In this note the three dimensional Dirac operator $A_m$ with boundary conditions, which are the analogue of the two dimensional zigzag boundary conditions, is investigated. It is shown that $A_m$ is self-adjoint in $L^2(Omega;mathbb{C}^4)$ for any open set $Omega subset mathbb{R}^3$ and its spectrum is described explicitly in terms of the spectrum of the Dirichlet Laplacian in $Omega$. In particular, whenever the spectrum of the Dirichlet Laplacian is purely discrete, then also the spectrum of $A_m$ consists of discrete eigenvalues that accumulate at $pm infty$ and one additional eigenvalue of infinite multiplicity.
151 - S. Kupin 2008
We give sufficient conditions for the presence of the absolutely continuous spectrum of a Schrodinger operator on a regular rooted tree without loops (also called regular Bethe lattice or Cayley tree).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا