No Arabic abstract
In this letter, we provide fundamental insights into the dynamic transcritical transition process using molecular dynamics simulations. A transcritical region, which covers three different fluid states, was discovered as a substitute for the traditional interface. The physical properties, such as temperature and density, exhibited a highly non-linear distribution in the transcritical region. Meanwhile, the surface tension was found to exist throughout the transcritical region, and the magnitude was directly proportional to $ - rho cdot { abla ^2}rho $
Turbulent flows under transcritical conditions are present in regenerative cooling systems of rocker engines and extraction processes in chemical engineering. The turbulent flows and the corresponding heat transfer phenomena in these complex processes are still not well understood experimentally and numerically. The objective of this work is to investigate the turbulent flows under transcritical conditions using DNS of turbulent channel flows. A fully compressible solver is used in conjunction with a Peng-Robinson real-fluid equation of state to describe the transcritical flows. A channel flow with two isothermal walls is simulated with one heated and one cooled boundary layers. The grid resolution adopted in this study is slightly finer than that required for DNS of incompressible channel flows. The simulations are conducted using both fully (FC) and quasi-conservative (QC) schemes to assess their performance for transcritical wall-bounded flows. The instantaneous flows and the statistics are analyzed and compared with the canonical theories. It is found that results from both FC and QC schemes qualitatively agree well with noticeable difference near the top heated wall, where spurious oscillations in velocity can be observed. Using the DNS data, we then examine the usefulness of Townsend attached eddy hypothesis in the context of flows at transcritical conditions. It is shown that the streamwise energy spectrum exhibits the inverse wavenumber scaling and that the streamwise velocity structure function follows a logarithmic scaling, thus providing support to the attached eddy model at transcritical conditions.
This article describes a video uploaded to the APS DFD Annual Meeting 2009 Gallery of Fluid Motion. The video contains both animations and still images from a three-dimensional volumetric velocimetry measurement set acquired in the flow around a Rushton turbine.
The injection of liquid fuel at supercritical pressures is a relevant topic in combustion, but usually overlooked. In the past, the wrong assumption whereby the liquid experiments a fast transition to a supercritical state was made, thus neglecting any role of two-phase interface dynamics in the early stages of the atomization process. However, recent studies have shown that local thermodynamic phase equilibrium and mixing between the involved species allow the coexistence of both phases in this pressure range. In this work, a Volume-of-Fluid method adapted to variable-density real fluids is used to solve the low-Mach-number governing equations coupled with a thermodynamic model based on the Soave-Redlich-Kwong equation of state. The mixing process, interface thermodynamics and early deformation of a cool liquid jet composed of n-decane surrounded by a hotter gas composed of oxygen at 150 bar are analyzed. Although heat conducts from the hotter gas into the liquid, net condensation can provide the proper local energy balance at high pressures. Then, vaporization and condensation may happen simultaneously at different interface locations. As pressure increases, liquid and gas mixtures become more alike in the vicinity of the interface. Thus, a combination of low surface tension force and gas-like liquid viscosities causes an early growth of surface instabilities. Early results indicate some similarity with high-Weber-number incompressible flows. The role of vortex dynamics on the interface deformation is analyzed by using the dynamical vortex identification method.
Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-body environments dynamically interplay with ice formation or melting process. Previous studies have revealed the complex nature of the icing process, but have often ignored one of the most remarkable particularity of water, its density anomaly, and the induced stratification layers interacting and coupling in a complex way in presence of turbulence and phase change. By combining experiments, numerical simulations, and theoretical modeling, we investigate solidification of freshwater, properly considering phase transition, water density anomaly, and real physical properties of ice and water phases, which we show to be essential for correctly predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front, stably and unstably stratified water layers occur. Despite the complex interaction between the ice front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured with the theoretical model. It is revealed that the thermal driving has major effects on the temporal evolution of the global icing process, which can vary from a few days to a few hours in the current parameter regime. Our model can be applied to general situations where the icing dynamics occurs under different thermal and geometrical conditions (e.g. cooling conditions or water layer depth).
This entry is aimed at describing cloud physics with an emphasis on fluid dynamics. As is inevitable for a review of an enormously complicated problem, it is highly selective and reflects of the authors focus. The range of scales involved, and the relevant physics at each scale is described. Particular attention is given to droplet dynamics and growth, and turbulence with and without thermodynamics.