Changeover phenomenon in randomly colored Potts model


Abstract in English

A hybrid Potts model where a random concentration $p$ of the spins assume $q_0$ states and a random concentration $1-p$ of the spins assume $q>q_0$ states is introduced. It is known that when the system is homogeneous, with an integer spin number $q_0$ or $q$, it undergoes a second or a first order transition, respectively. It is argued that there is a concentration $p^ast$ such that the transition nature of the model is changed at $p^ast$. This idea is demonstrated analytically and by simulations for two different types of interaction: the usual square lattice nearest neighboring and the mean field all-to-all interaction. Exact expressions for the second order critical line in concentration-temperature parameter space of the mean field model together with some other related critical properties, are derived.

Download