Do you want to publish a course? Click here

Multi-version Tensor Completion for Time-delayed Spatio-temporal Data

215   0   0.0 ( 0 )
 Added by Cheng Qian
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Real-world spatio-temporal data is often incomplete or inaccurate due to various data loading delays. For example, a location-disease-time tensor of case counts can have multiple delayed updates of recent temporal slices for some locations or diseases. Recovering such missing or noisy (under-reported) elements of the input tensor can be viewed as a generalized tensor completion problem. Existing tensor completion methods usually assume that i) missing elements are randomly distributed and ii) noise for each tensor element is i.i.d. zero-mean. Both assumptions can be violated for spatio-temporal tensor data. We often observe multip



rate research

Read More

How can we predict missing values in multi-dimensional data (or tensors) more accurately? The task of tensor completion is crucial in many applications such as personalized recommendation, image and video restoration, and link prediction in social networks. Many tensor factorization and neural network-based tensor completion algorithms have been developed to predict missing entries in partially observed tensors. However, they can produce inaccurate estimations as real-world tensors are very sparse, and these methods tend to overfit on the small amount of data. Here, we overcome these shortcomings by presenting a data augmentation technique for tensors. In this paper, we propose DAIN, a general data augmentation framework that enhances the prediction accuracy of neural tensor completion methods. Specifically, DAIN first trains a neural model and finds tensor cell importances with influence functions. After that, DAIN aggregates the cell importance to calculate the importance of each entity (i.e., an index of a dimension). Finally, DAIN augments the tensor by weighted sampling of entity importances and a value predictor. Extensive experimental results show that DAIN outperforms all data augmentation baselines in terms of enhancing imputation accuracy of neural tensor completion on four diverse real-world tensors. Ablation studies of DAIN substantiate the effectiveness of each component of DAIN. Furthermore, we show that DAIN scales near linearly to large datasets.
Spatio-temporal data sets are rapidly growing in size. For example, environmental variables are measured with ever-higher resolution by increasing numbers of automated sensors mounted on satellites and aircraft. Using such data, which are typically noisy and incomplete, the goal is to obtain complete maps of the spatio-temporal process, together with proper uncertainty quantification. We focus here on real-time filtering inference in linear Gaussian state-space models. At each time point, the state is a spatial field evaluated on a very large spatial grid, making exact inference using the Kalman filter computationally infeasible. Instead, we propose a multi-resolution filter (MRF), a highly scalable and fully probabilistic filtering method that resolves spatial features at all scales. We prove that the MRF matrices exhibit a particular block-sparse multi-resolution structure that is preserved under filtering operations through time. We also discuss inference on time-varying parameters using an approximate Rao-Blackwellized particle filter, in which the integrated likelihood is computed using the MRF. We compare the MRF to existing approaches in a simulation study and a real satellite-data application.
To accommodate the unprecedented increase of commercial airlines over the next ten years, the Next Generation Air Transportation System (NextGen) has been implemented in the USA that records large-scale Air Traffic Management (ATM) data to make air travel safer, more efficient, and more economical. A key role of collaborative decision making for air traffic scheduling and airspace resource management is the accurate prediction of flight delay. There has been a lot of attempts to apply data-driven methods such as machine learning to forecast flight delay situation using air traffic data of departures and arrivals. However, most of them omit en-route spatial information of airlines and temporal correlation between serial flights which results in inaccuracy prediction. In this paper, we present a novel aviation delay prediction system based on stacked Long Short-Term Memory (LSTM) networks for commercial flights. The system learns from historical trajectories from automatic dependent surveillance-broadcast (ADS-B) messages and uses the correlative geolocations to collect indispensable features such as climatic elements, air traffic, airspace, and human factors data along posterior routes. These features are integrated and then are fed into our proposed regression model. The latent spatio-temporal patterns of data are abstracted and learned in the LSTM architecture. Compared with previous schemes, our approach is demonstrated to be more robust and accurate for large hub airports.
Most algorithms for representation learning and link prediction in relational data have been designed for static data. However, the data they are applied to usually evolves with time, such as friend graphs in social networks or user interactions with items in recommender systems. This is also the case for knowledge bases, which contain facts such as (US, has president, B. Obama, [2009-2017]) that are valid only at certain points in time. For the problem of link prediction under temporal constraints, i.e., answering queries such as (US, has president, ?, 2012), we propose a solution inspired by the canonical decomposition of tensors of order 4. We introduce new regularization schemes and present an extension of ComplEx (Trouillon et al., 2016) that achieves state-of-the-art performance. Additionally, we propose a new dataset for knowledge base completion constructed from Wikidata, larger than previous benchmarks by an order of magnitude, as a new reference for evaluating temporal and non-temporal link prediction methods.
Spatiotemporal traffic time series (e.g., traffic volume/speed) collected from sensing systems are often incomplete with considerable corruption and large amounts of missing values, preventing users from harnessing the full power of the data. Missing data imputation has been a long-standing research topic and critical application for real-world intelligent transportation systems. A widely applied imputation method is low-rank matrix/tensor completion; however, the low-rank assumption only preserves the global structure while ignores the strong local consistency in spatiotemporal data. In this paper, we propose a low-rank autoregressive tensor completion (LATC) framework by introducing textit{temporal variation} as a new regularization term into the completion of a third-order (sensor $times$ time of day $times$ day) tensor. The third-order tensor structure allows us to better capture the global consistency of traffic data, such as the inherent seasonality and day-to-day similarity. To achieve local consistency, we design the temporal variation by imposing an AR($p$) model for each time series with coefficients as learnable parameters. Different from previous spatial and temporal regularization schemes, the minimization of temporal variation can better characterize temporal generative mechanisms beyond local smoothness, allowing us to deal with more challenging scenarios such blackout missing. To solve the optimization problem in LATC, we introduce an alternating minimization scheme that estimates the low-rank tensor and autoregressive coefficients iteratively. We conduct extensive numerical experiments on several real-world traffic data sets, and our results demonstrate the effectiveness of LATC in diverse missing scenarios.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا