Do you want to publish a course? Click here

Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Tradeoff Curve

301   0   0.0 ( 0 )
 Added by Sean Sinclair
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the problem of dividing limited resources to individuals arriving over $T$ rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e. preferences over the different resources). A standard notion of `fairness in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. The former is an individual guarantee, requiring that each agent prefers her own allocation over the allocation of any other; in contrast, efficiency is a global property, requiring that the allocations clear the available resources. For divisible resources, when the number of individuals of each type are known upfront, the above desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously, and hence the best one can do is to try and allocate so as to approximately satisfy the two properties. We show that in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention, in that any algorithm achieving additive envy-freeness up to a factor of $L_T$ necessarily suffers an efficiency loss of at least $1 / L_T$. We complement this uncertainty principle with a simple algorithm, HopeGuardrail, which allocates resources based on an adaptive threshold policy. We show that our algorithm is able to achieve any fairness-efficiency point on this frontier, and moreover, in simulation results, provides allocations close to the optimal fair solution in hindsight. This motivates its use in practical applications, as the algorithm is able to adapt to any desired fairness efficiency trade-off.



rate research

Read More

We consider the problem of dividing limited resources between a set of agents arriving sequentially with unknown (stochastic) utilities. Our goal is to find a fair allocation - one that is simultaneously Pareto-efficient and envy-free. When all utilities are known upfront, the above desiderata are simultaneously achievable (and efficiently computable) for a large class of utility functions. In a sequential setting, however, no policy can guarantee these desiderata simultaneously for all possible utility realizations. A natural online fair allocation objective is to minimize the deviation of each agents final allocation from their fair allocation in hindsight. This translates into simultaneous guarantees for both Pareto-efficiency and envy-freeness. However, the resulting dynamic program has state-space which is exponential in the number of agents. We propose a simple policy, HopeOnline, that instead aims to `match the ex-post fair allocation vector using the current available resources and `predicted histogram of future utilities. We demonstrate the effectiveness of our policy compared to other heurstics on a dataset inspired by mobile food-bank allocations.
We study the fair division of items to agents supposing that agents can form groups. We thus give natural generalizations of popular concepts such as envy-freeness and Pareto efficiency to groups of fixed sizes. Group envy-freeness requires that no group envies another group. Group Pareto efficiency requires that no group can be made better off without another group be made worse off. We study these new group properties from an axiomatic viewpoint. We thus propose new fairness taxonomies that generalize existing taxonomies. We further study ne
We consider fair division problems where indivisible items arrive one-by-one in an online fashion and are allocated immediately to agents who have additive utilities over these items. Many existing offline mechanisms do not work in this online setting. In addition, many existing axiomatic results often do not transfer from the offline to the online setting. For this reason, we propose here three new online mechanisms, as well as consider the axiomatic properties of three previously proposed online mechanisms. In this paper, we use these mechanisms and characterize classes of online mechanisms that are strategy-proof, and return envy-free and Pareto efficient allocations, as well as combinations of these properties. Finally, we identify an important impossibility result.
295 - Jiarui Gan , Bo Li , Xiaowei Wu 2021
In the budget-feasible allocation problem, a set of items with varied sizes and values are to be allocated to a group of agents. Each agent has a budget constraint on the total size of items she can receive. The goal is to compute a feasible allocation that is envy-free (EF), in which the agents do not envy each other for the items they receive, nor do they envy a charity, who is endowed with all the unallocated items. Since EF allocations barely exist even without budget constraints, we are interested in the relaxed notion of envy-freeness up to one item (EF1). The computation of both exact and approximate EF1 allocations remains largely open, despite a recent effort by Wu et al. (IJCAI 2021) in showing that any budget-feasible allocation that maximizes the Nash Social Welfare (NSW) is 1/4-approximate EF1. In this paper, we move one step forward by showing that for agents with identical additive valuations, a 1/2-approximate EF1 allocation can be computed in polynomial time. For the uniform-budget and two-agent cases, we propose efficient algorithms for computing an exact EF1 allocation. We also consider the large budget setting, i.e., when the item sizes are infinitesimal compared with the agents budgets, and show that both the NSW maximizing allocation and the allocation our polynomial-time algorithm computes have an approximation close to 1 regarding EF1.
We consider the problem of fairly allocating indivisible public goods. We model the public goods as elements with feasibility constraints on what subsets of elements can be chosen, and assume that agents have additive utilities across elements. Our model generalizes existing frameworks such as fair public decision making and participatory budgeting. We study a groupwise fairness notion called the core, which generalizes well-studied notions of proportionality and Pareto efficiency, and requires that each subset of agents must receive an outcome that is fair relative to its size. In contrast to the case of divisible public goods (where fractional allocations are permitted), the core is not guaranteed to exist when allocating indivisible public goods. Our primary contributions are the notion of an additive approximation to the core (with a tiny multiplicative loss), and polynomial time algorithms that achieve a small additive approximation, where the additive factor is relative to the largest utility of an agent for an element. If the feasibility constraints define a matroid, we show an additive approximation of 2. A similar approach yields a constant additive bound when the feasibility constraints define a matching. More generally, if the feasibility constraints define an arbitrary packing polytope with mild restrictions, we show an additive guarantee that is logarithmic in the width of the polytope. Our algorithms are based on variants of the convex program for maximizing the Nash social welfare, but differ significantly from previous work in how it is used. Our guarantees are meaningful even when there are fewer elements than the number of agents. As far as we are aware, our work is the first to approximate the core in indivisible settings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا