Do you want to publish a course? Click here

Estimation of mask effectiveness perception for small domains using multiple data sources

237   0   0.0 ( 0 )
 Added by Aditi Sen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

All pandemics are local; so learning about the impacts of pandemics on public health and related societal issues at granular levels is of great interest. COVID-19 is affecting everyone in the globe and mask wearing is one of the few precautions against it. To quantify peoples perception of mask effectiveness and to prevent the spread of COVID-19 for small areas, we use Understanding America Studys (UAS) survey data on COVID-19 as our primary data source. Our data analysis shows that direct survey-weighted estimates for small areas could be highly unreliable. In this paper we develop a synthetic estimation method to estimate proportions of mask effectiveness for small areas using a logistic model that combines information from multiple data sources. We select our working model using an extensive data analysis facilitated by a new variable selection criterion for survey data and benchmarking ratios. We propose a Jackknife method to estimate variance of our proposed estimator. From our data analysis. it is evident that our proposed synthetic method outperforms direct survey-weighted estimator with respect to commonly used evaluation measures.



rate research

Read More

Influenza and respiratory syncytial virus (RSV) are the leading etiological agents of seasonal acute respiratory infections (ARI) around the world. Medical doctors typically base the diagnosis of ARI on patients symptoms alone and do not always conduct virological tests necessary to identify individual viruses, which limits the ability to study the interaction between multiple pathogens and make public health recommendations. We consider a stochastic kinetic model (SKM) for two interacting ARI pathogens circulating in a large population and an empirically motivated background process for infections with other pathogens causing similar symptoms. An extended marginal sampling approach based on the Linear Noise Approximation to the SKM integrates multiple data sources and additional model components. We infer the parameters defining the pathogens dynamics and interaction within a Bayesian hierarchical model and explore the posterior trajectories of infections for each illness based on aggregate infection reports from six epidemic seasons collected by the state health department, and a subset of virological tests from a sentinel program at a general hospital in San Luis Potosi, Mexico. We interpret the results based on real and simulated data and make recommendations for future data collection strategies. Supplementary materials and software are provided online.
Influenza and respiratory syncytial virus (RSV) are the leading etiological agents of seasonal acute respiratory infections (ARI) around the world. Medical doctors typically base the diagnosis of ARI on patients symptoms alone, and do not always conduct virological tests necessary to identify individual viruses, which limits the ability to study the interaction between multiple pathogens and make public health recommendations. We consider a stochastic kinetic model (SKM) for two interacting ARI pathogens circulating in a large population and an empirically motivated background process for infections with other pathogens causing similar symptoms. An extended marginal sampling approach based on the Linear Noise Approximation to the SKM integrates multiple data sources and additional model components. We infer the parameters defining the pathogens dynamics and interaction within a Bayesian hierarchical model and explore the posterior trajectories of infections for each illness based on aggregate infection reports from six epidemic seasons collected by the state health department, and a subset of virological tests from a sentinel program at a general hospital in San Luis Potosi, Mexico. We interpret the results based on real and simulated data and make recommendations for future data collection strategies. Supplementary materials and software are provided online.
Chromosome conformation capture experiments such as Hi-C are used to map the three-dimensional spatial organization of genomes. One specific feature of the 3D organization is known as topologically associating domains (TADs), which are densely interacting, contiguous chromatin regions playing important roles in regulating gene expression. A few algorithms have been proposed to detect TADs. In particular, the structure of Hi-C data naturally inspires application of community detection methods. However, one of the drawbacks of community detection is that most methods take exchangeability of the nodes in the network for granted; whereas the nodes in this case, i.e. the positions on the chromosomes, are not exchangeable. We propose a network model for detecting TADs using Hi-C data that takes into account this non-exchangeability. In addition, our model explicitly makes use of cell-type specific CTCF binding sites as biological covariates and can be used to identify conserved TADs across multiple cell types. The model leads to a likelihood objective that can be efficiently optimized via relaxation. We also prove that when suitably initialized, this model finds the underlying TAD structure with high probability. Using simulated data, we show the advantages of our method and the caveats of popular community detection methods, such as spectral clustering, in this application. Applying our method to real Hi-C data, we demonstrate the domains identified have desirable epigenetic features and compare them across different cell types.
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in peoples online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.
The recent advent of smart meters has led to large micro-level datasets. For the first time, the electricity consumption at individual sites is available on a near real-time basis. Efficient management of energy resources, electric utilities, and transmission grids, can be greatly facilitated by harnessing the potential of this data. The aim of this study is to generate probability density estimates for consumption recorded by individual smart meters. Such estimates can assist decision making by helping consumers identify and minimize their excess electricity usage, especially during peak times. For suppliers, these estimates can be used to devise innovative time-of-use pricing strategies aimed at their target consumers. We consider methods based on conditional kernel density (CKD) estimation with the incorporation of a decay parameter. The methods capture the seasonality in consumption, and enable a nonparametric estimation of its conditional density. Using eight months of half-hourly data for one thousand meters, we evaluate point and density forecasts, for lead times ranging from one half-hour up to a week ahead. We find that the kernel-based methods outperform a simple benchmark method that does not account for seasonality, and compare well with an exponential smoothing method that we use as a sophisticated benchmark. To gauge the financial impact, we use density estimates of consumption to derive prediction intervals of electricity cost for different time-of-use tariffs. We show that a simple strategy of switching between different tariffs, based on a comparison of cost densities, delivers significant cost savings for the great majority of consumers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا