Do you want to publish a course? Click here

Neutron stars and the secret lives of quarks

82   0   0.0 ( 0 )
 Added by Jeffrey Berryman
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of non-diffuse sources of gravitational waves through compact-object mergers opens new prospects for the study of physics beyond the Standard Model. In this Letter, we consider the implications of the observation of GW190814, involving a coalescence of a black hole with a $sim$2.6 $M_odot$ compact object, which may be too massive to be a neutron star, given our current knowledge of the nuclear matter equation of state. We consider the possibility of a new force between quarks, suggested in other contexts, that modifies the neutron star equation of state, particularly at supranuclear densities. We evaluate how this modification can impact a neutron stars mass and radius to make the observed heavy compact object more probably a neutron star, rather than a black hole, and suggest that further such objects may yet be found. We note the terrestrial and astrophysical measurements that could confirm our picture.

rate research

Read More

We study the probability for nucleation of quark matter droplets in the dense cold cores of old neutron stars induced by the presence of a self-annihilating dark matter component, $chi$. Using a parameterized form of the equation of state for hadronic and quark phases of ordinary matter, we explore the thermodynamic conditions under which droplet formation is facilitated by the energy injection from $chi$ self-annihilations. We obtain the droplet nucleation time as a function of the dark matter candidate mass, $m_chi$. We discuss further observational consequences.
Second-order susceptibilities $chi^{11}_{ij}$ of baryon, electric, and strangeness, $B$, $Q$, and $S$, charges, are calculated in the Chiral Mean Field (CMF) model and compared to available lattice QCD data. The susceptibilities are sensitive to the short range repulsive interactions between different hadron species, especially to the hardcore repulsion of hyperons. Decreasing the hyperons size, as compared to the size of the non-strange baryons, does improve significantly the agreement of the CMF model results with the Lattice QCD data. The electric charge-dependent susceptibilities are sensitive to the short range repulsive volume of mesons. The comparison with lattice QCD data suggests that strange baryons, non-strange mesons and strange mesons have significantly smaller excluded volumes than non-strange baryons. The CMF model with these modified hadron volumes allows for a mainly hadronic description of the QCD susceptibilities significantly above the chiral pseudo-critical temperature. This improved CMF model which is based on the lattice QCD data, has been used to study the properties of both cold QCD matter and neutron star matter. The phase structure in both cases is essentially unchanged, i.e. a chiral first-order phase transition occurs at low temperatures ($T_{rm CP}approx 17$ MeV), and hyperons survive deconfinement to higher densities than non-strange hadrons. The neutron star maximal mass remains close to 2.1$M_odot$ and the mass-radius diagram is only modified slightly due to the appearance of hyperons and is in agreement with astrophysical observations.
We demonstrate that the observation of neutron stars with masses greater than one solar mass places severe demands on any exotic neutron decay mode that could explain the discrepancy between beam and bottle measurements of the neutron lifetime. If the neutron can decay to a stable, feebly-interacting dark fermion, the maximum possible mass of a neutron star is 0.7 solar masses, while all well-measured neutron star masses exceed one solar mass. The survival of $2 M_odot$ neutron stars therefore indicates that any explanation beyond the Standard Model for the neutron lifetime puzzle requires dark matter to be part of a multi-particle dark sector with highly constrained interactions.
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs. Our calculation predicts that no quark matter exists inside neutron stars.
We use the holographic V-QCD models to analyse the physics of dense QCD and neutron stars. Accommodating lattice results for thermodynamics of QCD enables us to make generic predictions for the Equation of State (EoS) of the quark matter phase in the cold and dense regime. We demonstrate that the resulting pressure in V-QCD matches well with a family of neutron-star-matter EoSs that interpolate between state-of-the-art theoretical results for low and high density QCD. After implementing the astrophysical constraints, i.e., the largest known neutron star mass and the recent LIGO/Virgo results for the tidal deformability, we analyse the phase transition between the baryonic and quark matter phases. We find that the baryon density $n_B$ at the transition is at least 2.9 times the nuclear saturation density $n_s$. The transition is of strongly first order at low and intermediate densities, i.e., for $n_B/n_s lesssim 7.5$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا