We prove a Fatou-type theorem and its converse for certain positive eigenfunctions of the Laplace-Beltrami operator $mathcal{L}$ on a Harmonic $NA$ group. We show that a positive eigenfunction $u$ of $mathcal{L}$ with eigenvalue $beta^2-rho^2$, $betain (0,infty)$, has an admissible limit in the sense of Koranyi, precisely at those boundary points where the strong derivative of the boundary measure of $u$ exists. Moreover, the admissible limit and the strong derivative are the same. This extends a result of Ramey and Ullrich regarding nontangential convergence of positive harmonic functions on the Euclidean upper half space.