No Arabic abstract
Face swapping has both positive applications such as entertainment, human-computer interaction, etc., and negative applications such as DeepFake threats to politics, economics, etc. Nevertheless, it is necessary to understand the scheme of advanced methods for high-quality face swapping and generate enough and representative face swapping images to train DeepFake detection algorithms. This paper proposes the first Megapixel level method for one shot Face Swapping (or MegaFS for short). Firstly, MegaFS organizes face representation hierarchically by the proposed Hierarchical Representation Face Encoder (HieRFE) in an extended latent space to maintain more facial details, rather than compressed representation in previous face swapping methods. Secondly, a carefully designed Face Transfer Module (FTM) is proposed to transfer the identity from a source image to the target by a non-linear trajectory without explicit feature disentanglement. Finally, the swapped faces can be synthesized by StyleGAN2 with the benefits of its training stability and powerful generative capability. Each part of MegaFS can be trained separately so the requirement of our model for GPU memory can be satisfied for megapixel face swapping. In summary, complete face representation, stable training, and limited memory usage are the three novel contributions to the success of our method. Extensive experiments demonstrate the superiority of MegaFS and the first megapixel level face swapping database is released for research on DeepFake detection and face image editing in the public domain. The dataset is at this link.
We show that even when face images are unconstrained and arbitrarily paired, face swapping between them is actually quite simple. To this end, we make the following contributions. (a) Instead of tailoring systems for face segmentation, as others previously proposed, we show that a standard fully convolutional network (FCN) can achieve remarkably fast and accurate segmentations, provided that it is trained on a rich enough example set. For this purpose, we describe novel data collection and generation routines which provide challenging segmented face examples. (b) We use our segmentations to enable robust face swapping under unprecedented conditions. (c) Unlike previous work, our swapping is robust enough to allow for extensive quantitative tests. To this end, we use the Labeled Faces in the Wild (LFW) benchmark and measure the effect of intra- and inter-subject face swapping on recognition. We show that our intra-subject swapped faces remain as recognizable as their sources, testifying to the effectiveness of our method. In line with well known perceptual studies, we show that better face swapping produces less recognizable inter-subject results. This is the first time this effect was quantitatively demonstrated for machine vision systems.
Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake faces, since the corresponding training data is considered outdated. In this case, robust One-Shot learning methods is more compatible with the requirements of changeable training data. In this paper, we propose a universal One-Shot GAN generated fake face detection method which can be used in significantly different areas of anomaly detection. The proposed method is based on extracting out-of-context objects from faces via scene understanding models. To do so, we use state of the art scene understanding and object detection methods as a pre-processing tool to detect the weird objects in the face. Second, we create a bag of words given all the detected out-of-context objects per all training data. This way, we transform each image into a sparse vector where each feature represents the confidence score related to each detected object in the image. Our experiments show that, we can discriminate fake faces from real ones in terms of out-of-context features. It means that, different sets of objects are detected in fake faces comparing to real ones when we analyze them with scene understanding and object detection models. We prove that, the proposed method can outperform previous methods based on our experiments on Style-GAN generated fake faces.
In this paper, we propose a novel encoder, called ShapeEditor, for high-resolution, realistic and high-fidelity face exchange. First of all, in order to ensure sufficient clarity and authenticity, our key idea is to use an advanced pretrained high-quality random face image generator, i.e. StyleGAN, as backbone. Secondly, we design ShapeEditor, a two-step encoder, to make the swapped face integrate the identity and attribute of the input faces. In the first step, we extract the identity vector of the source image and the attribute vector of the target image respectively; in the second step, we map the concatenation of identity vector and attribute vector into the $mathcal{W+}$ potential space. In addition, for learning to map into the latent space of StyleGAN, we propose a set of self-supervised loss functions with which the training data do not need to be labeled manually. Extensive experiments on the test dataset show that the results of our method not only have a great advantage in clarity and authenticity than other state-of-the-art methods, but also reflect the sufficient integration of identity and attribute.
We propose an efficient framework, called Simple Swap (SimSwap), aiming for generalized and high fidelity face swapping. In contrast to previous approaches that either lack the ability to generalize to arbitrary identity or fail to preserve attributes like facial expression and gaze direction, our framework is capable of transferring the identity of an arbitrary source face into an arbitrary target face while preserving the attributes of the target face. We overcome the above defects in the following two ways. First, we present the ID Injection Module (IIM) which transfers the identity information of the source face into the target face at feature level. By using this module, we extend the architecture of an identity-specific face swapping algorithm to a framework for arbitrary face swapping. Second, we propose the Weak Feature Matching Loss which efficiently helps our framework to preserve the facial attributes in an implicit way. Extensive experiments on wild faces demonstrate that our SimSwap is able to achieve competitive identity performance while preserving attributes better than previous state-of-the-art methods. The code is already available on github: https://github.com/neuralchen/SimSwap.
In this paper, we propose a novel face detection network with three novel contributions that address three key aspects of face detection, including better feature learning, progressive loss design and anchor assign based data augmentation, respectively. First, we propose a Feature Enhance Module (FEM) for enhancing the original feature maps to extend the single shot detector to dual shot detector. Second, we adopt Progressive Anchor Loss (PAL) computed by two different sets of anchors to effectively facilitate the features. Third, we use an Improved Anchor Matching (IAM) by integrating novel anchor assign strategy into data augmentation to provide better initialization for the regressor. Since these techniques are all related to the two-stream design, we name the proposed network as Dual Shot Face Detector (DSFD). Extensive experiments on popular benchmarks, WIDER FACE and FDDB, demonstrate the superiority of DSFD over the state-of-the-art face detectors.