Do you want to publish a course? Click here

Scalable Personalised Item Ranking through Parametric Density Estimation

198   0   0.0 ( 0 )
 Added by Riku Togashi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Learning from implicit feedback is challenging because of the difficult nature of the one-class problem: we can observe only positive examples. Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem. However, such methods have two main drawbacks particularly in large-scale applications; (1) the pairwise approach is severely inefficient due to the quadratic computational cost; and (2) even recent model-based samplers (e.g. IRGAN) cannot achieve practical efficiency due to the training of an extra model. In this paper, we propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart while performing similarly to the pairwise counterpart in terms of ranking effectiveness. Our approach estimates the probability densities of positive items for each user within a rich class of distributions, viz. emph{exponential family}. In our formulation, we derive a loss function and the appropriate negative sampling distribution based on maximum likelihood estimation. We also develop a practical technique for risk approximation and a regularisation scheme. We then discuss that our single-model approach is equivalent to an IRGAN variant under a certain condition. Through experiments on real-world datasets, our approach outperforms the pointwise and pairwise counterparts in terms of effectiveness and efficiency.



rate research

Read More

Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.
Learning from implicit user feedback is challenging as we can only observe positive samples but never access negative ones. Most conventional methods cope with this issue by adopting a pairwise ranking approach with negative sampling. However, the pairwise ranking approach has a severe disadvantage in the convergence time owing to the quadratically increasing computational cost with respect to the sample size; it is problematic, particularly for large-scale datasets and complex models such as neural networks. By contrast, a pointwise approach does not directly solve a ranking problem, and is therefore inferior to a pairwise counterpart in top-K ranking tasks; however, it is generally advantageous in regards to the convergence time. This study aims to establish an approach to learn personalised ranking from implicit feedback, which reconciles the training efficiency of the pointwise approach and ranking effectiveness of the pairwise counterpart. The key idea is to estimate the ranking of items in a pointwise manner; we first reformulate the conventional pointwise approach based on density ratio estimation and then incorporate the essence of ranking-oriented approaches (e.g. the pairwise approach) into our formulation. Through experiments on three real-world datasets, we demonstrate that our approach not only dramatically reduces the convergence time (one to two orders of magnitude faster) but also significantly improving the ranking performance.
Temporal set prediction is becoming increasingly important as many companies employ recommender systems in their online businesses, e.g., personalized purchase prediction of shopping baskets. While most previous techniques have focused on leveraging a users history, the study of combining it with others histories remains untapped potential. This paper proposes Global-Local Item Embedding (GLOIE) that learns to utilize the temporal properties of sets across whole users as well as within a user by coining the names as global and local information to distinguish the two temporal patterns. GLOIE uses Variational Autoencoder (VAE) and dynamic graph-based model to capture global and local information and then applies attention to integrate resulting item embeddings. Additionally, we propose to use Tweedie output for the decoder of VAE as it can easily model zero-inflated and long-tailed distribution, which is more suitable for several real-world data distributions than Gaussian or multinomial counterparts. When evaluated on three public benchmarks, our algorithm consistently outperforms previous state-of-the-art methods in most ranking metrics.
Large scale recommender models find most relevant items from huge catalogs, and they play a critical role in modern search and recommendation systems. To model the input space with large-vocab categorical features, a typical recommender model learns a joint embedding space through neural networks for both queries and items from user feedback data. However, with millions to billions of items in the corpus, users tend to provide feedback for a very small set of them, causing a power-law distribution. This makes the feedback data for long-tail items extremely sparse. Inspired by the recent success in self-supervised representation learning research in both computer vision and natural language understanding, we propose a multi-task self-supervised learning (SSL) framework for large-scale item recommendations. The framework is designed to tackle the label sparsity problem by learning better latent relationship of item features. Specifically, SSL improves item representation learning as well as serving as additional regularization to improve generalization. Furthermore, we propose a novel data augmentation method that utilizes feature correlations within the proposed framework. We evaluate our framework using two real-world datasets with 500M and 1B training examples respectively. Our results demonstrate the effectiveness of SSL regularization and show its superior performance over the state-of-the-art regularization techniques. We also have already launched the proposed techniques to a web-scale commercial app-to-app recommendation system, with significant improvements top-tier business metrics demonstrated in A/B experiments on live traffic. Our online results also verify our hypothesis that our framework indeed improves model performance even more on slices that lack supervision.
The collaborative ranking problem has been an important open research question as most recommendation problems can be naturally formulated as ranking problems. While much of collaborative ranking methodology assumes static ranking data, the importance of temporal information to improving ranking performance is increasingly apparent. Recent advances in deep learning, especially the discovery of various attention mechanisms and newer architectures in addition to widely used RNN and CNN in natural language processing, have allowed us to make better use of the temporal ordering of items that each user has engaged with. In particular, the SASRec model, inspired by the popular Transformer model in natural languages processing, has achieved state-of-art results in the temporal collaborative ranking problem and enjoyed more than 10x speed-up when compared to earlier CNN/RNN-based methods. However, SASRec is inherently an un-personalized model and does not include personalized user embeddings. To overcome this limitation, we propose a Personalized Transformer (SSE-PT) model, outperforming SASRec by almost 5% in terms of NDCG@10 on 5 real-world datasets. Furthermore, after examining some random users engagement history and corresponding attention heat maps used during the inference stage, we find our model is not only more interpretable but also able to focus on recent engagement patterns for each user. Moreover, our SSE-PT model with a slight modification, which we call SSE-PT++, can handle extremely long sequences and outperform SASRec in ranking results with comparable training speed, striking a balance between performance and speed requirements. Code and data are open sourced at https://github.com/wuliwei9278/SSE-PT.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا