Do you want to publish a course? Click here

Wavelength conversion for single-photon polarization qubits through continuous variable quantum teleportation

243   0   0.0 ( 0 )
 Added by Xi-Wang Luo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum internet connects remote quantum processors that need interact and exchange quantum signals over a long distance through photonic channels. However, these quantum nodes are usually composed of quantum systems with emitted photons unsuitable for long-distance transmission. Therefore, quantum wavelength conversion to telecom is crucial for long-distance quantum networks based on optical fiber. Here we propose wavelength conversion devices for single-photon polarization qubits using continuous variable quantum teleportation, which can efficiently convert qubits between near-infrared (780/795 nm suitable for interacting with atomic quantum nodes) and telecom wavelength (1300-1500 nm suitable for long-distance transmission). The teleportation uses entangled photon sources (i.e., non-degenerate two-mode squeezed state) that can be generated by four-wave mixing in rubidium atomic vapor cells, with a diamond configuration of atomic transitions. The entangled fields can be emitted in two orthogonal polarizations with locked relative phase, making them especially suitable for interfacing with single-photon polarization qubits. Our work paves the way for the realization of long-distance quantum networks.



rate research

Read More

A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
608 - G. W. Lin , X. B. Zou , X. M. Lin 2013
We propose a scheme to implement a heralded quantum memory for single-photon polarization qubits with a single atom trapped in an optical cavity. In this scheme, an injected photon only exchanges quantum state with the atom, so that the heralded storage can be achieved by detecting the output photon. We also demonstrate that the scheme can be used for realizing the heralded quantum state transfer, exchange and entanglement distribution between distant nodes. The ability to detect whether the operation has succeeded or not is crucial for practical application.
Quantum teleportation is a primitive in several important applications, including quantum communication, quantum computation, error correction, and quantum networks. In this work, we propose an optimal test for the performance of continuous-variable (CV) quantum teleportation in terms of the energy-constrained channel fidelity between ideal CV teleportation and its experimental implementation. All work prior to ours considered suboptimal tests of the performance of CV teleportation, focusing instead on its performance for particular states, such as ensembles of coherent states, squeezed states, cat states, etc. Here we prove that the optimal state for testing CV teleportation is an entangled superposition of twin-Fock states. We establish this result by reducing the problem of estimating the energy-constrained channel fidelity between ideal CV teleportation and its experimental approximation to a quadratic program and solving it. As an additional result, we obtain an analytical solution to the energy-constrained diamond distance between a photodetector and its experimental approximation. These results are relevant for experiments that make use of CV teleportation and photodetectors.
We show that the sender (Alice) and the receiver (Bob) each require coherent devices in order to achieve unconditional continuous variable quantum teleportation (CVQT), and this requirement cannot be achieved with conventional laser sources, even in principle. The appearance of successful CVQT in recent experiments is due to interpreting the measurement record fallaciously in terms of one preferred ensemble (or decomposition) of the correct density matrix describing the state. Our analysis is unrelated to technical problems such as laser phase drift or finite squeezing bandwidth.
131 - U.L. Andersen , T.C. Ralph 2013
Traditional continuous variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, Schrodinger cat states and two-mode squeezed state and we find several situations in which near-unity teleportation fidelity can be obtained with modest resources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا