Quantum Simulations of Material Properties on Quantum Computers


Abstract in English

Quantum computers hold promise to greatly improve the efficiency of quantum simulations of materials and to enable the investigation of systems and properties more complex than tractable on classical architectures. Here, we discuss computational frameworks to carry out electronic structure calculations of solids on noisy intermediate scale quantum computers using embedding theories and effective many-body Hamiltonians. We focus on a specific class of materials, i.e., spin defects in solids, which are promising systems to build future quantum technologies, e.g., computers, sensors and devices for quantum communications. Although quantum simulations on quantum architectures are in their infancy, promising results for realistic systems appear within reach.

Download