Do you want to publish a course? Click here

Travelling wave analysis of cellular invasion into surrounding tissues

107   0   0.0 ( 0 )
 Added by Matthew Simpson
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Single-species reaction-diffusion equations, such as the Fisher-KPP and Porous-Fisher equations, support travelling wave solutions that are often interpreted as simple mathematical models of biological invasion. Such travelling wave solutions are thought to play a role in various applications including development, wound healing and malignant invasion. One criticism of these single-species equations is that they do not explicitly describe interactions between the invading population and the surrounding environment. In this work we study a reaction-diffusion equation that describes malignant invasion which has been used to interpret experimental measurements describing the invasion of malignant melanoma cells into surrounding human skin tissues. This model explicitly describes how the population of cancer cells degrade the surrounding tissues, thereby creating free space into which the cancer cells migrate and proliferate to form an invasion wave of malignant tissue that is coupled to a retreating wave of skin tissue. We analyse travelling wave solutions of this model using a combination of numerical simulation, phase plane analysis and perturbation techniques. Our analysis shows that the travelling wave solutions involve a range of very interesting properties that resemble certain well-established features of both the Fisher-KPP and Porous-Fisher equations, as well as a range of novel properties that can be thought of as extensions of these well-studied single-species equations. Of particular interest is that travelling wave solutions of the invasion model are very well approximated by trajectories in the Fisher-KPP phase plane that are normally disregarded. This observation establishes a previously unnoticed link between coupled multi-species reaction diffusion models of invasion and a different class of models of invasion that involve moving boundary problems.



rate research

Read More

In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, PLoS Comp. Bio., 8(6) 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered.
How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarette et al., eLife 8:e44860, 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues or in-vitro organoids.
Biological invasion, whereby populations of motile and proliferative individuals lead to moving fronts that invade into vacant regions, are routinely studied using partial differential equation (PDE) models based upon the classical Fisher--KPP model. While the Fisher--KPP model and extensions have been successfully used to model a range of invasive phenomena, including ecological and cellular invasion, an often--overlooked limitation of the Fisher--KPP model is that it cannot be used to model biological recession where the spatial extent of the population decreases with time. In this work we study the textit{Fisher--Stefan} model, which is a generalisation of the Fisher--KPP model obtained by reformulating the Fisher--KPP model as a moving boundary problem. The nondimensional Fisher--Stefan model involves just one single parameter, $kappa$, which relates the shape of the density front at the moving boundary to the speed of the associated travelling wave, $c$. Using numerical simulation, phase plane and perturbation analysis, we construct approximate solutions of the Fisher--Stefan model for both slowly invading and slowly receding travelling waves, as well as for rapidly receding travelling waves. These approximations allow us to determine the relationship between $c$ and $kappa$ so that commonly--reported experimental estimates of $c$ can be used to provide estimates of the unknown parameter $kappa$. Interestingly, when we reinterpret the Fisher--KPP model as a moving boundary problem, many disregarded features of the classical Fisher--KPP phase plane take on a new interpretation since travelling waves solutions with $c < 2$ are not normally considered. This means that our analysis of the Fisher--Stefan model has both practical value and an inherent mathematical value.
Tumour progression has been described as a sequence of traits or phenotypes that cells have to acquire if the neoplasm is to become an invasive and malignant cancer. Although the genetic mutations that lead to these phenotypes are random, the process by which some of these mutations become successful and spread is influenced by the tumour microenvironment and the presence of other phenotypes. It is thus likely that some phenotypes that are essential in tumour progression will emerge in the tumour population only with the prior presence of other different phenotypes. In this paper we use evolutionary game theory to analyse the interactions between three different tumour cell phenotypes defined by autonomous growth, anaerobic glycolysis, and cancer cell invasion. The model allows to understand certain specific aspects of glioma progression such as the emergence of diffuse tumour cell invasion in low-grade tumours. We find that the invasive phenotype is more likely to evolve after the appearance of the glycolytic phenotype which would explain the ubiquitous presence of invasive growth in malignant tumours. The result suggests that therapies which increase the fitness cost of switching to anaerobic glycolysis might decrease the probability of the emergence of more invasive phenotypes
Solute transport is modeled using mixture theory, applied to the nanoparticle accumulation and concentration decay in the tissue space for different vascular configurations. A comparison of a single capillary configuration (SBC) with two parallel cylindrical blood vessels (2 BC) and a lymph vessel parallel to a blood vessel (BC_LC) embedded in the tissue cylinder is performed for five solute molecular weights between 0.1 kDa and 70 kDa. We found that the presence of a second capillary reduces the extravascular concentration compared to a single capillary and this reduction is enhanced by the presence of a lymph vessel. Co-current flow direction between two adjacent vessels led to nonhomogeneous nanoparticle distribution for larger particle sizes in the tissue space, while smaller particles (0.1 kDa and 3 kDa) showed the propensity to get trapped locally in the tissue during counter-current flow. Varying the intercapillary distance with respect to vessel diameter shows a deviation of 10-30 % concentration for 2 BC and 45-60% concentration for BC_LC configuration compared to the reference SBC configuration. Finally, we introduce a non-dimensional time scale that captures the concertation as a function of the transport and geometric parameters. We find that the peak solute concentration in the tissue space occurs at a non-dimensional time, T_peak^* = 0.027+/-0.018, irrespective of the solute size, tissue architecture, and microvessel flow direction. This suggests that if indeed such a universal time scale holds, the knowledge of this time would allow estimation of the time window at which solute concentration in tissue peaks. Hence this can aid in the design of future therapeutic efficacy studies as an example for triggering drug release or laser excitation in the case of photothermal therapies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا