Do you want to publish a course? Click here

On the origin of observed cosmic ray spectrum below 100 TV

85   0   0.0 ( 0 )
 Added by Igor Moskalenko
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Significant progress in cosmic ray (CR) studies was achieved over the past decade. Particularly important are precise measurements of primary and secondary species in the TV rigidity domain that show a bump in the spectra of CR species from 0.5-50 TV. In this letter, we argue that it is likely caused by a stellar bow- or wind-termination shock that reaccelerates preexisting CRs, which further propagate to the Sun along the magnetic field lines. This single universal process is responsible for the observed spectra of all CR species in the rigidity range below 100 TV. A viable candidate is Epsilon Eridani star at 3.2 pc from the Sun, which is well-aligned with the direction of the local magnetic field. We provide a simple formula that reproduces the spectra of all CR species with only two nonadjustable shock parameters, uniquely derived from the proton data. We show how our formalism predicts helium and carbon spectra and the B/C ratio.



rate research

Read More

Designed to be a successor of the previous flown space based gamma ray detectors, the Fermi Large Area Telescope (LAT) is also an electron detector. Taking advantage of its capability to separate electromagnetic and hadronic signals it is possible to accurately measure the Cosmic Ray electron spectrum. The spectra of primary cosmic ray electrons below 20 GeV is influenced by many local effects such as solar modulation and the geomagnetic cutoff. For energies below a few GeV it is possible to observe the albedo population of electrons which are controlled by the local magnetic field. In this paper we present the LAT electron analysis in particular event selection and validation as well as the first results on the measurement of the electron spectrum below 20 GeV.
Precise measurements of the energy spectra of cosmic rays (CRs) show various kinds of features deviating from single power-laws, which give very interesting and important implications on their origin and propagation. Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons (and probably also for Helium nuclei). Very recently, the DArk Matter Particle Explorer (DAMPE) measurement about the proton spectrum clearly reveals such a softening with a high significance. Here we study the implications of these new measurements, as well as the groundbased indirect measurements, on the origin of CRs. We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously. In the framework of multiple components, we discuss two possible scenarios, the multiple source population scenario and the background plus nearby source scenario. Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies. Considering the anisotropy observations, the nearby source model is favored.
71 - L.Q. Yin , S.S. Zhang , Z. Cao 2019
Large High Altitude Air Shower Observatory(LHAASO) is a composite cosmic ray observatory consisting of three detector arrays: kilometer square array (KM2A) which includes the electromagnetic detector array and muon detector array, water Cherenkov detector array (WCDA) and wide field of view Cherenkov telescope array (WFCTA). One of the main scientific objectives of LHAASO is to precisely measure the cosmic rays energy spectrum of individual components from 1014 eV to 1018 eV. The hybrid observation will be employed by LHAASO experiment, in which the lateral and longitudinal distributions of the extensive air shower can be observed simultaneously. Thus many kinds of parameters can be used for primary nuclei identification. In this paper, high purity cosmic ray simulation samples of light nuclei component are obtained through Multi-Variable Analysis. The apertures of 1/4 LHAASO array for pure proton and mixed proton and helium (H&He) samples are 900 m2Sr and 1800 m2Sr respectively. A prospect of proton and H&He spectra from 100 TeV to 4 PeV is discussed.
134 - T. Abu-Zayyad , R. Aida , M. Allen 2012
The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays with primary energies above 1.6 x 10^(18) eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 x 10^(18) eV and a steepening at 5.4 x 10^(19) eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of ultra-high energy cosmic ray surface detector data, that involves generating a complete simulation of ultra-high energy cosmic rays striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the thinning approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.
The new setup of the CODALEMA experiment installed at the Radio Observatory in Nancay, France, is described. It includes broadband active dipole antennas and an extended and upgraded particle detector array. The latter gives access to the air shower energy, allowing us to compute the efficiency of the radio array as a function of energy. We also observe a large asymmetry in counting rates between showers coming from the North and the South in spite of the symmetry of the detector. The observed asymmetry can be interpreted as a signature of the geomagnetic origin of the air shower radio emission. A simple linear dependence of the electric field with respect to vxB is used which reproduces the angular dependencies of the number of radio events and their electric polarity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا