Do you want to publish a course? Click here

Practical Fingerprinting of RF Devices in the Wild

98   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a new RF fingerprinting technique for wireless emitters that is based on a simple, easily and efficiently retrainable Ridge Regression (RR) classifier. The RR learns to identify devices using bursts of waveform samples, conveniently transformed and preprocessed by delay-loop reservoirs. Deep delay Loop Reservoir Computing (DLR) is our processing architecture that supports general machine learning algorithms on resource-constrained devices by leveraging delay-loop reservoir computing (RC) and innovative architectures of loop trees. In prior work, we trained and evaluated DLR using high SNR device emissions in clean channels. We here demonstrate how to use DLR for IoT authentication by performing RF-based Specific Emitter Identification (SEI), even in the presence of fading channels and heavy in-band jamming by leveraging a matched filter (MF) extension, dubbed MF-DLR. We show that the MF processing improves the SEI performance of RR without the RC transformation (MF-RR), but the MF-DLR is more robust and applicable for addressing signatures beyond waveform transients (e.g. turn-on).

rate research

Read More

RF devices can be identified by unique imperfections embedded in the signals they transmit called RF fingerprints. The closed set classification of such devices, where the identification must be made among an authorized set of transmitters, has been well explored. However, the much more difficult problem of open set classification, where the classifier needs to reject unauthorized transmitters while recognizing authorized transmitters, has only been recently visited. So far, efforts at open set classification have largely relied on the utilization of signal samples captured from a known set of unauthorized transmitters to aid the classifier learn unauthorized transmitter fingerprints. Since acquiring new transmitters to use as known transmitters is highly expensive, we propose to use generative deep learning methods to emulate unauthorized signal samples for the augmentation of training datasets. We develop two different data augmentation techniques, one that exploits a limited number of known unauthorized transmitters and the other that does not require any unauthorized transmitters. Experiments conducted on a dataset captured from a WiFi testbed indicate that data augmentation allows for significant increases in open set classification accuracy, especially when the authorized set is small.
107 - Xin He , Weiwei Jiang , Meng Cheng 2019
The WiFi backscatter communications offer ultra-low power and ubiquitous connections for IoT systems. Caused by the intermittent-nature of the WiFi traffics, state-of-the-art WiFi backscatter communications are not reliable for backscatter link or simple for tag to do adaptive transmission. In order to build sustainable (reliable and simple) WiFi backscatter communications, we present GuardRider, a WiFi backscatter system that enables backscatter communications riding on WiFi signals in the wild. The key contribution of GuardRider is an optimization algorithm of designing RS codes to follow the statistical knowledge of WiFi traffics and adjust backscatter transmission. With GuardRider, the reliable baskscatter link is guaranteed and a backscatter tag is able to adaptively transmit information without heavily listening the excitation channel. We built a hardware prototype of GuardRider using a customized tag with FPGA implementation. Both the simulations and field experiments verify that GuardRider could achieve a notably gains in bit error rate and frame error rate, which are hundredfold reduction in simulations and around 99% in filed experiments.
In indoor positioning, signal fluctuation is highly location-dependent. However, signal uncertainty is one critical yet commonly overlooked dimension of the radio signal to be fingerprinted. This paper reviews the commonly used Gaussian Processes (GP) for probabilistic positioning and points out the pitfall of using GP to model signal fingerprint uncertainty. This paper also proposes Deep Gaussian Processes (DGP) as a more informative alternative to address the issue. How DGP better measures uncertainty in signal fingerprinting is evaluated via simulated and realistically collected datasets.
Physical layer authentication relies on detecting unique imperfections in signals transmitted by radio devices to isolate their fingerprint. Recently, deep learning-based authenticators have increasingly been proposed to classify devices using these fingerprints, as they achieve higher accuracies compared to traditional approaches. However, it has been shown in other domains that adding carefully crafted perturbations to legitimate inputs can fool such classifiers. This can undermine the security provided by the authenticator. Unlike adversarial attacks applied in other domains, an adversary has no control over the propagation environment. Therefore, to investigate the severity of this type of attack in wireless communications, we consider an unauthorized transmitter attempting to have its signals classified as authorized by a deep learning-based authenticator. We demonstrate a reinforcement learning-based attack where the impersonator--using only the authenticators binary authentication decision--distorts its signals in order to penetrate the system. Extensive simulations and experiments on a software-defined radio testbed indicate that at appropriate channel conditions and bounded by a maximum distortion level, it is possible to fool the authenticator reliably at more than 90% success rate.
This paper investigates the problem of detection and classification of unmanned aerial vehicles (UAVs) in the presence of wireless interference signals using a passive radio frequency (RF) surveillance system. The system uses a multistage detector to distinguish signals transmitted by a UAV controller from the background noise and interference signals. First, RF signals from any source are detected using a Markov models-based naive Bayes decision mechanism. When the receiver operates at a signal-to-noise ratio (SNR) of 10 dB, and the threshold, which defines the states of the models, is set at a level 3.5 times the standard deviation of the preprocessed noise data, a detection accuracy of 99.8% with a false alarm rate of 2.8% is achieved. Second, signals from Wi-Fi and Bluetooth emitters, if present, are detected based on the bandwidth and modulation features of the detected RF signal. Once the input signal is identified as a UAV controller signal, it is classified using machine learning (ML) techniques. Fifteen statistical features extracted from the energy transients of the UAV controller signals are fed to neighborhood component analysis (NCA), and the three most significant features are selected. The performance of the NCA and five different ML classifiers are studied for 15 different types of UAV controllers. A classification accuracy of 98.13% is achieved by k-nearest neighbor classifier at 25 dB SNR. Classification performance is also investigated at different SNR levels and for a set of 17 UAV controllers which includes two pairs from the same UAV controller models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا