Do you want to publish a course? Click here

Warped Gradient-Enhanced Gaussian Process Surrogate Models for Inference with Intractable Likelihoods

108   0   0.0 ( 0 )
 Added by Quan Vu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Markov chain Monte Carlo methods for intractable likelihoods, such as the exchange algorithm, require simulations of the sufficient statistics at every iteration of the Markov chain, which often result in expensive computations. Surrogate models for the likelihood function have been developed to accelerate inference algorithms in this context. However, these surrogate models tend to be relatively inflexible, and often provide a poor approximation to the true likelihood function. In this article, we propose the use of a warped, gradient-enhanced, Gaussian process surrogate model for the likelihood function, which jointly models the sample means and variances of the sufficient statistics, and uses warping functions to capture covariance nonstationarity in the input parameter space. We show that both the consideration of nonstationarity and the inclusion of gradient information can be leveraged to obtain a surrogate model that outperforms the conventional stationary Gaussian process surrogate model when making inference, particularly in regions where the likelihood function exhibits a phase transition. We also show that the proposed surrogate model can be used to improve the effective sample size per unit time when embedded in exact inferential algorithms. The utility of our approach in speeding up inferential algorithms is demonstrated on simulated and real-world data.



rate research

Read More

This article surveys computational methods for posterior inference with intractable likelihoods, that is where the likelihood function is unavailable in closed form, or where evaluation of the likelihood is infeasible. We review recent developments in pseudo-marginal methods, approximate Bayesian computation (ABC), the exchange algorithm, thermodynamic integration, and composite likelihood, paying particular attention to advancements in scalability for large datasets. We also mention R and MATLAB source code for implementations of these algorithms, where they are available.
A large number of statistical models are doubly-intractable: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gaussian Markov random fields, autologistic models and Exponential random graph models. A number of approximate schemes based on MCMC techniques, Approximate Bayesian computation (ABC) or analytic approximations to the posterior have been suggested, and these are reviewed here. Exact MCMC schemes, which can be applied to a subset of doubly-intractable distributions, have also been developed and are described in this paper. As yet, no general method exists which can be applied to all classes of models with doubly-intractable posteriors. In addition, taking inspiration from the Physics literature, we study an alternative method based on representing the intractable likelihood as an infinite series. Unbiased estimates of the likelihood can then be obtained by finite time stochastic truncation of the series via Russian Roulette sampling, although the estimates are not necessarily positive. Results from the Quantum Chromodynamics literature are exploited to allow the use of possibly negative estimates in a pseudo-marginal MCMC scheme such that expectations with respect to the posterior distribution are preserved. The methodology is reviewed on well-known examples such as the parameters in Ising models, the posterior for Fisher-Bingham distributions on the $d$-Sphere and a large-scale Gaussian Markov Random Field model describing the Ozone Column data. This leads to a critical assessment of the strengths and weaknesses of the methodology with pointers to ongoing research.
We investigate the use of data-driven likelihoods to bypass a key assumption made in many scientific analyses, which is that the true likelihood of the data is Gaussian. In particular, we suggest using the optimization targets of flow-based generative models, a class of models that can capture complex distributions by transforming a simple base distribution through layers of nonlinearities. We call these flow-based likelihoods (FBL). We analyze the accuracy and precision of the reconstructed likelihoods on mock Gaussian data, and show that simply gauging the quality of samples drawn from the trained model is not a sufficient indicator that the true likelihood has been learned. We nevertheless demonstrate that the likelihood can be reconstructed to a precision equal to that of sampling error due to a finite sample size. We then apply FBLs to mock weak lensing convergence power spectra, a cosmological observable that is significantly non-Gaussian (NG). We find that the FBL captures the NG signatures in the data extremely well, while other commonly used data-driven likelihoods, such as Gaussian mixture models and independent component analysis, fail to do so. This suggests that works that have found small posterior shifts in NG data with data-driven likelihoods such as these could be underestimating the impact of non-Gaussianity in parameter constraints. By introducing a suite of tests that can capture different levels of NG in the data, we show that the success or failure of traditional data-driven likelihoods can be tied back to the structure of the NG in the data. Unlike other methods, the flexibility of the FBL makes it successful at tackling different types of NG simultaneously. Because of this, and consequently their likely applicability across datasets and domains, we encourage their use for inference when sufficient mock data are available for training.
The challenges posed by complex stochastic models used in computational ecology, biology and genetics have stimulated the development of approximate approaches to statistical inference. Here we focus on Synthetic Likelihood (SL), a procedure that reduces the observed and simulated data to a set of summary statistics, and quantifies the discrepancy between them through a synthetic likelihood function. SL requires little tuning, but it relies on the approximate normality of the summary statistics. We relax this assumption by proposing a novel, more flexible, density estimator: the Extended Empirical Saddlepoint approximation. In addition to proving the consistency of SL, under either the new or the Gaussian density estimator, we illustrate the method using two examples. One of these is a complex individual-based forest model for which SL offers one of the few practical possibilities for statistical inference. The examples show that the new density estimator is able to capture large departures from normality, while being scalable to high dimensions, and this in turn leads to more accurate parameter estimates, relative to the Gaussian alternative. The new density estimator is implemented by the esaddle R package, which can be found on the Comprehensive R Archive Network (CRAN).
The increasing availability of data presents an opportunity to calibrate unknown parameters which appear in complex models of phenomena in the biomedical, physical and social sciences. However, model complexity often leads to parameter-to-data maps which are expensive to evaluate and are only available through noisy approximations. This paper is concerned with the use of interacting particle systems for the solution of the resulting inverse problems for parameters. Of particular interest is the case where the available forward model evaluations are subject to rapid fluctuations, in parameter space, superimposed on the smoothly varying large scale parametric structure of interest. Multiscale analysis is used to study the behaviour of interacting particle system algorithms when such rapid fluctuations, which we refer to as noise, pollute the large scale parametric dependence of the parameter-to-data map. Ensemble Kalman methods (which are derivative-free) and Langevin-based methods (which use the derivative of the parameter-to-data map) are compared in this light. The ensemble Kalman methods are shown to behave favourably in the presence of noise in the parameter-to-data map, whereas Langevin methods are adversely affected. On the other hand, Langevin methods have the correct equilibrium distribution in the setting of noise-free forward models, whilst ensemble Kalman methods only provide an uncontrolled approximation, except in the linear case. Therefore a new class of algorithms, ensemble Gaussian process samplers, which combine the benefits of both ensemble Kalman and Langevin methods, are introduced and shown to perform favourably.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا